Search published articles


Showing 7 results for Electric Vehicles

P. Bayat, H. Mojallali, A. Baghramian, P. Bayat,
Volume 6, Issue 2 (6-2016)
Abstract

In this paper, a two-surfaces sliding mode controller (TSSMC) is proposed for the voltage tracking control of a two input DC-DC converter in application of electric vehicles (EVs). The imperialist competitive algorithm (ICA) is used for tuning TSSMC parameters. The proposed controller significantly improves the transient response and disturbance rejection of the two input converters while preserving the closed-loop stability. The combination of the proposed controller and ICA, realizes a fast transient response over a wide transient load changes and input voltage disturbances. For modeling the equations governing the system, state-space average modeling technique is used. In order to analyzing the results, the two input converter equipped with the proposed controller, was modeled in MATLAB/SIMULINK environment. Simulation results are reported to validate the theoretical predictions and to confirm the superior performance of the proposed nonlinear controller when it is compared with a conventional pure SMC.


Mr Yasin Salami Ranjbaran, Dr Mohammad Hassan Shoajeefard, Dr Gholam Reza Molaeimanesh,
Volume 8, Issue 2 (6-2018)
Abstract

This paper mainly discusses the thermal behavior and performance of Lithium-ion batteries utilized in hybrid electric vehicles (HEVs), battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) based on numerical simulations. In this work, the battery’s thermal behavior is investigated at different C-rates and also contour plots of phase potential for both tabs and volume-monitored plot of maximum temperature inside the computational domain is illustrated. The numerical simulation is done via ANSYS Fluent traditional software package which utilizes the dual potential multi-scale multi-dimensional (MSMD) battery model to analyze the cell discharge behavior and investigate the thermal performance and potential variation(s). The results show that the maximum temperature of battery surface is proportional to the battery discharge rate, i.e., the higher the C-rate, the greater cell surface temperature. Moreover, an increasing symmetric pattern is noticed for volume monitor of maximum temperature over the simulation period. Finally, it is worth noting that the battery tab potential varies more quickly if the C-rate becomes greater. In fact, the lowest and highest rate of changes are observed for 1C and 4C, respectively.


Mr Sina Jenabi Haqparast, Gholam Reza Molaeimanesh, Seyed Morteza Mousavi-Khoshdel,
Volume 8, Issue 4 (12-2018)
Abstract

With respect to the limitations of fossil energy resources, different types of electric vehicles (EVs) are developed as suitable alternatives. Lithium-ion (Li-ion) battery cells play an extremely important role in EVs due to their unique features. But they need a thermal management system (TMS) to maintain their surface temperature uniformity and avoid them from thermal runaways. In the current study a phase change material (PCM) based TMS is introduced and applied to provide a uniform temperature distribution on a Li-ion battery cell surface. This PCM based TMS declines the final maximum temperature difference to (1/5) and (2/3) at 1 C and 2 C discharge rate respectively.
 
Mr Peyman Bayat, Dr. Hossein Afrakhte,
Volume 9, Issue 3 (9-2019)
Abstract

As an effective means of displacing fossil fuel consumption and reducing greenhouse gas emissions, plug-in electric vehicles (PEVs) and plug-in hybrid electric vehicles (PHEVs) have attracted more and more attentions. From the power grid perspective, PHEVs and PEVs equipped with batteries can also be used as energy storage facilities, due to the fact that, these vehicles are parked most of the time. Since, the temperature has a strong influence on the battery life-time and also the inherent characteristics of PHEV/PEV energy storage systems limit their use as appropriate resources for energy tuning, this paper, at first, presents a detailed model for energy storage systems of PEVs considering the cooling system and set temperature, and then, it proposes a reliable energy management method for scheduling of PEVs in the multi-microgrid (MMG) systems for both faulted and normal operations using parametric multi-objective function. The simulation results indicate that, considering proper energy management of energy storage systems of PEVs has significant influence on energy scheduling of MMG systems. For this investigation, all data analysis and simulations were done and implemented in MATLAB/Simulink environment.
Mr, Mohmadreza Sabzehali, Mr, Mahdi Alibeigi, Dr. Somayeh Davoodabadi Farahani,
Volume 11, Issue 2 (6-2021)
Abstract

In this study, a new micro gas turbine engine is presented. The effect of inlet air cooling on the performance of the micro gas turbine engine by changing the parameters such as the temperature difference between the inlet air temperature (IAT) based on ISA (International Society of Automation) standard and turbine inlet temperature (TIT) has been investigated. then, an Optimization is done base on the Genetic Algorithm with two separate objectives, SNOx minimization, and Thermal efficiency maximization, separately. The thermal efficiency and specific consumption of the optimized cycle based on the thermal efficiency are compared with the XU7/L3 internal combustion engine to produce the output power of 64.57 KW. Results show by adding a cooling system to the micro gas turbines to cool the inlet air with the coefficient performance of 2 and 4 increased the thermal efficiency by about 11.37% rather than base mrio gas turbine engine Eventually, the proposed micro gas turbine engine is more efficient than the XU7/L3 internal combustion engine. so It can be understood that micro  GT is one of the best substitutes for the internal combustion engine in the new vehicle age just by adding the cooling system.
Ali Modarresi, Saman Samiezadeh, Ali Qasemian,
Volume 13, Issue 1 (3-2023)
Abstract

In recent years, the automotive industry has experienced a dramatic mutation in the develop ment of electric vehicles. One of the most important aspects of this type of vehicle is its thermal management. Among the various parts of an electric vehicle that are subjected to thermal management, the battery is of particular importance. Battery cell temperatures may exceed the allowable range due to continuous and high-pressure operation and various weather conditions, and this, in addition to performance, severely affects battery life. Therefore, the appropriate cooling system is essential. In this research, the most common methods of battery cooling are investigated. First, three-dimensional thermal analysis on the battery is performed using the computational fluid dynamics method in transient and steady-state phases.  Then, the effect of changing the cooling flow rate on the maximum temperature of the battery cell as well as the temperature difference of the cells in the battery pack is investigated. The effect of changing inlet coolant temperature change on battery cell temperature distribution is also investigated. The results show that by increasing the flow rate from 0.5 to 1.2 liter per minute, the maximum temperature in the battery pack and the temperature difference between the cells decrease to 44.4 and 2.51 ° C, respectively. Also, by changing the temperature of the inlet coolant from 15 to 30 ° C, the maximum temperature in the battery pack increases up to 42.2 ° C and the temperature difference is negligible.
Dr. Pezhman Bayat, Dr. Peyman Bayat, Dr. Abbas Fattahi Meyabadi,
Volume 14, Issue 1 (3-2024)
Abstract

The hydrogen fuel cell is one of the latest technologies used in fuel cell electric vehicles (FCEVs), which uses hydrogen gas to supply the electrical energy needed by the electric engines. The proposed topology has boost function and uses a novel diodes and switches network, which leads to the creation of an integrated system with high efficiency and high voltage gain. Other advantages of the proposed converter are small size, low voltage and current stresses on all the components, less component count, continuous input current and light weight; which makes it more efficient compared to existing structures. In this regard, theoretical calculations and steady state analysis for the proposed system have been presented. Also, in order to verify the performance of the proposed converter, it has been simulated in the MATLAB/Simulink software environment at the rated power of 1kW, with an output voltage of 220V and an output current of 4.55A, and the results have been presented in detail. The peak efficiency of the proposed converter reached 97.4% at half power, and the efficiency at rated power was reported 96%. Moreover, in the proposed structure, the voltage stress of capacitors, diodes and switches reaches the maximum value of 63%, 83% and 41% of the output voltage, respectively; which are promising values. Finally, to verify the performance of the proposed converter and the relationships obtained, a 1kW prototype is built in the laboratory to demonstrate the efficiency of the proposed converter.
 

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb