Showing 2 results for Emissions.
A. Mohammadi, A. Jazayeri, M. Ziabasharhagh,
Volume 2, Issue 4 (10-2012)
Abstract
Porous media has interesting features in compared with free flame combustion due to the extended of the
lean flammability limits and lower emissions. Advanced new generation of internal combustion (IC)
engines are expected to have far better emissions levels both gaseous and particulate matter, at the same
time having far lower fuel consumption on a wide range of operating condition. These criteria could be
improved having a homogeneous combustion process in an engine. Present work considers simulation of
direct fuel injection in an IC engine equipped with a chemically inert porous medium (PM), having
cylindrical geometry that is installed in cylinder head to homogenize and stabilize the combustion process.
A numerical study of a 3D model, PM engine is carried out using a modified version of the KIVA-3V code.
Since there is not any published material for PM-engines in literature, the numerical results for combustion
waves propagation within PM are compared with experimental data available in the literature for a lean
mixture of air and methane under filtration in packed bed, the accuracy of results are very promising. For
PM-engine simulation the methane fuel is injected directly through a hot PM which is mounted in cylinder
head. Therefore volumetric combustion occurs as a result within PM and in-cylinder. The effects of
injection timing on mixture formation, pressure and temperature distribution in both phases of PM and incylinder
fluid together with combustion emissions such as CO and NO are studied in detail for an important
part of the cycle.
Sina Hassanzadeh Saraei, Shahram Khalilarya, Samad Jafarmadar, Saeed Takhtfirouzeh, Hadi Taghavifar,
Volume 8, Issue 4 (12-2018)
Abstract
Pollutant emissions from diesel engines are significantly affected by fuel injection strategies that could reduce NOx and Soot emissions. For the first time and in this study, numerical simulations were performed to consider the influences of changing the injection duration in each pulse of the double injection strategies on in-cylinder parameters and pollutant emissions. Results confirmed that double injection strategies could influence the in-cylinder temperature, which leads to a reduction in NOx and soot emissions. Additionally, it is seen that decreasing the injection duration could increase the in-cylinder peak pressure and temperature. It could also reduce the soot emission owing to the better fuel atomization. Moreover, RATE+0.5CA case, which injection duration for each pulse increases 0.5 CA, was selected to be the optimum case in reduction of pollutant emissions.