Search published articles


Showing 59 results for Engine

P. Bashi Shahabi, H. Niazmand, M.r Modarres Razavi,
Volume 1, Issue 1 (1-2011)
Abstract

Increase of environmental pollution and restricted emission legislations have forced companies to produce automobiles with lower air pollutants. In this respect, discharge of blowby gases into the environment has been prohibited and their recirculation into the combustion chamber is proposed as an alternative solution. In addition, using EGR technique to control and reduce nitrogen oxides in internal combustion engines has been quite effective. An important common feature of these two methods is the fact that improper EGR/blowby distribution leads to the increase in other pollutants and the significant engine power reduction. Therefore, the study of important factors in maldistribution of the injected gases is of great practical importance. Besides the injection position that has significant role on distribution of injected gases, it seems that other parameters such as engine speed, injection velocity and angle may affect the distribution of injected gases. In this numerical study, a new technique is used to determine the effect of these parameters on distribution of injected EGR or blowby gases into the EF7 intake manifold. Numerical calculations are performed for three injection velocities, five injection angles and three different engine speeds. It was found that recirculated gases distribution is slightly influenced by the injection angle and injection velocity, while the engine speed is the most influential factor.
Dr. B. Mashadi, E. Zakeri,
Volume 1, Issue 1 (1-2011)
Abstract

In this paper, Front Engine Accessory Drive (FEAD) system of automotive engine is modeled with ADAMS software. The model is validated using engine test data. It is then used to investigate the effect of design parameters on the system performance such as belt vibration and loads on the idlers. Three alternative layouts were developed in order to improve the performance of original EEAD system. The validated model was used to study the effect of changes made to the layouts on the reduction of vibration and loads. Several system outputs indicated that for the modified layouts, large reductions in vibration and loads were achieved. It was concluded that one of proposed layouts was more appropriate and could be a useful substitution to the original layout. The developed model also proved useful for the design of engine FEAD systems and could be used for further developments.


A. Paykani, R. Khoshbakhti Saray, A. M. Mohammadi Kousha, M. T. Shervani Tabar,
Volume 1, Issue 2 (6-2011)
Abstract

In this study, a numerical simulation using the CFD software, FLUENT, has been conducted to examine the effect of various shapes of the venturi component sections in order to find the optimum venturi specifications to increase the EGR rate with minimum pressure loss at the part load operation range. The CFD results reveal that the venturi should be precisely optimized to introduce the required amount of EGR to the engine manifold. Then, the optimum venturi was manufactured, and it was installed on the engine intake system. By using the optimum Venturi EGR system instead of original system the 26% increase in EGR flow rate to the engine manifold is observed. In the second part of the paper, an experimental investigation was carried out on a “Lister 8-1” dual fuel (diesel – natural gas) engine to examine the simultaneous effect of inlet air pre-heating and EGR on performance and emission characteristics of a dual fuel engine. The use of EGR at high levels seems to be unable to improve the engine performance at part loads, however, it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency, resulting in reduced levels of both UHC and NOx emissions. CO and HC emissions were reduced by 24% and 31%, respectively. The NOx emissions were decreased by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.
M. H. Shojaeefard, I. Sohrabiasl, E. Sarshari,
Volume 1, Issue 2 (6-2011)
Abstract

Intake system design as well as inlet ports and valves configuration is of paramount importance in the optimal performance of internal combustion engines. In the present study, the effect of inlet ports design is investigated on OM-457LA diesel engine by using a CFD analysis and the AVL-Fire code as well. A thermodynamic model of the whole engine equipped with a turbocharger and an intercooler is used to obtain the initial and boundary conditions of the inlet and outlet ports of the engine cylinder which are necessary for performing the three dimensional CFD analysis. The intake stroke as well as the compression and power strokes are included in this three dimensional CFD model. As a mean of validation the performance of the engine model with the base configuration of the inlet ports is compared to the experimental data. Two new alternative configurations for the inlet ports are then investigated with respect to the turbulence levels of the in-cylinder flow and the combustion characteristics as well. Finally it is demonstrated that applying the new configurations results in circa 75% reduction in nitric oxide formation besides increase of 32% in the in-cylinder flow swirl.


S. Javan, S. V. Hosseini, S. Sh. Alaviyoun,
Volume 2, Issue 1 (1-2012)
Abstract

Temperature is one of the effective parameters in erosion of spark plug electrodes. In this research, temperature of spark plug was measured in engine's different operation conditions with two types of fuels: compressed natural gas and gasoline. Test results showed that, temperature of center electrode is lower than ground electrode and maximum difference between them is 110ºC that occurs at 2500 rpm and full load conditions. Maximum temperature of spark plug occurs with CNG under full load conditions and 6380 rpm. In these conditions, ground electrode’s temperature reaches to 960ºC which is very prone to pre-ignition. On the other hand, center electrode’s temperature is 195ºC higher than the same condition with gasoline as a fuel which cause more electrode erosion rate. This temperature rise lead to cold type spark plug selection because of its better heat transfer. Spark plug erosion was studied after endurance tests with CNG as a fuel. Electrodes have non uniform wear patterns and consequently gap growth is not uniform. The average gap growth for two sets of spark plugs after two similar 200 hr endurance tests is 49.6%
A. Mohebbi, S. Jafarmadar, J. Pashae,
Volume 2, Issue 2 (4-2012)
Abstract

Nitrogen oxides (NOx) contribute to a wide range of environmental effects including the formation of acid rain and destroy ozone layer. In-cylinder high temperature flame and high oxygen concentration are the parameters which affect the NOx emissions. The EGR system is a very effective way for reducing NOx emission from a diesel engine (via reduction of these parameters), particularly at the high load of engine operation condition. In this study, the influence of EGR on diesel engine combustion, NOx/PM emissions, brake specific fuel consumption (BSFC), engine thermal efficiency, cylinder pressure and heat release rate (HRR) are analyzed and presented. The experiments have been conducted on a turbocharged DI diesel engine under full load condition at two different injection timings in order to distinguish and quantify some effects of Hot and Cooled EGR with various rates on the engine parameters. Experimental results showed that increase of EGR rate has a negative effect on air-fuel ratio. For a premixed combustion at constant boost pressure, ignition delay is increased leading to retardation of all combustion process, a low HRR peak and reduce of in-cylinder peak temperature. Using of Hot EGR reduces NOX emissions whereas PM emissions are increased. The advance of injection timing resulted in the reduction PM while both NOX emissions and fuel consumption were increased. The use of cooled EGR was more effective compared to the hot EGR. As a result, the EGR temperature has no significant impact on NOx emissions. With increasing EGR rate, unequal EGR distribution was increased in inlet port of cylinders while the reducing EGR temperature (cooled EGR) improved its distribution among the engine cylinders and decreased the EGR cylinder-to-cylinder variations.
P. Mohammadi, A.m. Nikbakht, M. Tabatabaei, Kh. Farhadi,
Volume 2, Issue 3 (7-2012)
Abstract

Global air pollution is a serious threat caused by excessive use of fossil fuels for transportation. Despite the fact that diesel fuel is a big environmental pollutant as it contains different hydrocarbons, sulphur and crude oil residues, it is yet regarded as a highly critical fuel due to its wide applications. Nowadays, biodiesel as a renewable additive is blended with diesel fuel to achieve numerous advantages such as lowering CO2, and CO emissions as well as higher lubricity. However, a few key drawbacks including higher production cost, deteriorated performance and likelihood to increase nitrogen oxide emissions have also been attributed to the application of diesel-biodiesel blends. Expanded polystyrene (EPS), known as a polymer for packaging and insulation, is an ideal material for energy recovery as it holds high energy value (1 kg of EPS is equivalent to 1.3 liters of liquid fuel). In this study, biodiesel was applied as a solvent of expanded polystyrene (EPS) during a special chemical and physical treatment. Various percentages of EPS in biodiesel blended diesel were tested to evaluate the fuel properties, emissions and performance of CI engine. The results of the variance analysis revealed that the addition of the additive improved diesel fuel properties by increasing the flash point as well as the reduction of density and viscosity. Despite a 3.6% reduction in brake power, a significant decrease in brake specific fuel consumption (7.26%) and an increase in brake thermal efficiency (7.83%) were observed at the full load and maximum speed of the engine. Additionally, considerable reductions of CO, CO2, NOx and smoke were achieved.
M. H. Shojaeefard, M. M. Etghani, M. Tahani, M. Akbari,
Volume 2, Issue 4 (10-2012)
Abstract

In this study the performance and emissions characteristics of a heavy-duty, direct injection, Compression ignition (CI) engine which is specialized in agriculture, have been investigated experimentally. For this aim, the influence of injection timing, load, engine speed on power, brake specific fuel consumption (BSFC), peak pressure (PP), nitrogen oxides (NOx), carbon dioxide (CO2), Carbon monoxide (CO), hydrocarbon (HC) and Soot emissions has been considered. The tests were performed at various injection timings, loads and speeds. It is used artificial neural network (ANN) for predicting and modeling the engine performance and emission. Multi-objective optimization with respect to engine emissions level and engine power was used in order to deter mine the optimum load, speed and injection timing. For this goal, a fast and elitist non-dominated sorting genetic algorithm II (NSGA II) was applied to obtain maximum engine power with minimum total exhaust emissions as a two objective functions.


A. Mohammadi, A. Jazayeri, M. Ziabasharhagh,
Volume 2, Issue 4 (10-2012)
Abstract

Porous media has interesting features in compared with free flame combustion due to the extended of the lean flammability limits and lower emissions. Advanced new generation of internal combustion (IC) engines are expected to have far better emissions levels both gaseous and particulate matter, at the same time having far lower fuel consumption on a wide range of operating condition. These criteria could be improved having a homogeneous combustion process in an engine. Present work considers simulation of direct fuel injection in an IC engine equipped with a chemically inert porous medium (PM), having cylindrical geometry that is installed in cylinder head to homogenize and stabilize the combustion process. A numerical study of a 3D model, PM engine is carried out using a modified version of the KIVA-3V code. Since there is not any published material for PM-engines in literature, the numerical results for combustion waves propagation within PM are compared with experimental data available in the literature for a lean mixture of air and methane under filtration in packed bed, the accuracy of results are very promising. For PM-engine simulation the methane fuel is injected directly through a hot PM which is mounted in cylinder head. Therefore volumetric combustion occurs as a result within PM and in-cylinder. The effects of injection timing on mixture formation, pressure and temperature distribution in both phases of PM and incylinder fluid together with combustion emissions such as CO and NO are studied in detail for an important part of the cycle.
M. Azadi, M. Baloo, G. H. Farrahi, S. M. Mirsalim,
Volume 3, Issue 1 (3-2013)
Abstract

In the present paper, a complete literatures review of thermal barrier coating applications in diesel engines is performed to select a proper type and to find coating effects. The coating system has effects on the fuel consumption, the power and the combustion efficiency, pollution contents and the fatigue lifetime of engine components. Usually there are several beneficial influences by applying ceramic layers on the combustion chamber, including the piston, the cylinder head, the cylinder block, intake and exhaust valves by using a plasma thermal spray method. Several disadvantages such as producing nitrogen oxides also exist when a coating system is used. In this article, all effects, advantages and disadvantages of thermal barrier coatings are investigated based on presented articles.
M. Eftekhar, A. Keshavarz, A. Ghasemian, J. Mahdavinia,
Volume 3, Issue 1 (3-2013)
Abstract

Running the industrial components at a proper temperature is always a big challenge for engineers. Internal combustion engines are among these components in which temperature plays a big role in their performance and emissions. With the development of new technology in the fields of ‘nano-materials’ and ‘nano-fluids’, it seems very promising to use this technology as a coolant in the internal combustion engines. In this study, a nano-fluid (Al2O3-Water/Ethylene Glycol (EG)) is used as an engine coolant along with an optimized heat exchanger to reduce the warm-up timing. The effect of nano-fluid concentration is considered here by using their corresponding governing equations, such as momentum and energy. The engine coolant thermal behavior calculation is carried out based on the lumped method. The obtained results indicated that using different percentage of nano-fluid mixtures (by volume), such as Al2O3- Water/EG as engine coolant enhances the heat transfer coefficient and reduces the warm-up timing which, in turn, results in reduced emissions and fuel consumption.
S. K. Kamboj, M. N. Karimi,
Volume 3, Issue 2 (6-2013)
Abstract

Alcohols have been used as a fuel for engines since 19th century. Among the various alcohols, ethanol and methanol are known as the most suited renewable, bio-based and ecofriendly fuel for spark-ignition (SI) engines. The most attractive properties of ethanol and methanol as an SI engine fuel are that it can be produced from renewable energy sources such as sugar, cane, cassava, many types of waste biomass materials, corn and barley. In addition, ethanol has higher evaporation heat, octane number and flammability temperature therefore it has positive influence on engine performance and reduces exhaust emissions. In this study, the effects of unleaded iso-octane, unleaded iso-octane–ethanol blend (E10) and isooctane-methanol blend (M10) on engine performance were investigated experimentally in a single cylinder four-stroke spark-ignition engine. The tests were performed by varying the throttle position, engine speed and loads. Three sets of observations were recorded at (1301 rpm, 16.8 Kg load), (1468 rpm, 15.8 Kg load) and (1544 rpm, 10 Kg load) for all tested fuels. The results of the engine test showed that IP, IMEP, Volumetric efficiency and thermal efficiency was higher for the E10 fuel and BSFC was lower. In general, most suited blend for SI engines has been specified as a blend of 10% ethanol. It was also observed that better performance was recorded during second set of observation for all the tested fuels. It was also found that ethanol–gasoline blends allow increasing compression ratio (CR) without knock occurrence.
B. Jafari, D. Domiri Ganji,
Volume 3, Issue 2 (6-2013)
Abstract

Air pollution is one of the major issues about the diesel engines in todays' world. It is a special concern in those areas that have difficulty meeting health-based outdoor air quality standards. Natural gas has low emission and resource abundance and also conventional compression ignition engine can be easily converted to a dual fuel mode to use natural gas as main fuel and diesel as pilot injection. The main object of this work is to investigate the effect of number of injector nozzle hole on the combustion and exhaust emission in a gas engine ignited with diesel fuel. We use one and three-dimensional simulation in parallel way in order to analyze the performance and combustion process of a dual fuel engine. The experimental results have also reported and compared with the simulated data.
S. Jafarmadar, M. Khanbabazadeh,
Volume 3, Issue 2 (6-2013)
Abstract

In the present work, multidimensional modeling of open-cycle process of OM355 engine was developed. Calculations for computational mesh were carried out. The results of the model were validated by experimentally measured in-cylinder pressure and the good agreement between calculations and measurements approved the trustworthy of numerical code. Results included pressure, temperature, emission and Rate of heat release diagrams were represented for the full cycle. Furthermore local flow field velocity vectors were indicated. The results show the importance of open-cycle simulations in automotive researches.
A. Mirmohammadi, F. Ommi,
Volume 3, Issue 3 (9-2013)
Abstract

The purpose of present paper is simulation a direct injection stratified charge natural gas engine. The KIVA-3V code was used for gaseous fuel injection simulation. Compression and expansion stroke of engine cycle is simulated using KIVA-3V code. In cylinder fuel equivalence ratio distribution criterion is used for studying mesh independency. The results show that 550000 cells number is sufficient. The amount of NO emission in the end of closed cycle simulation was found equal 674.875 ppm and In cylinder pressure versus engine crank angle degree was simulated that maximum value found in 366 oCA that equal to 27.3222 bar.
B. Sakhaei, M. Durali,
Volume 3, Issue 4 (12-2013)
Abstract

By new advancements in vehicle manufacturing vehicle quality evaluation and assurance has become a more critical issue. In present work, the vibration transfer path analysis and vibration path ranking of a car interior has been performed. The method is similar to classical multilevel TPA methods but has distinct differences. The method is named VIVS which stands for Vehicle Interior Vibration Simulation. Performance of some tests like chassis dyno test, virtual mass function test and body transfer function test are required in this approach. The accelerations on both sides of the engine mounts are measured on chassis dyno by which the virtual mass and body transfer functions are measured at engine mounts. Using the concept of multilevel TPA, the vibration share from each path is calculated. The overall vibration magnitude at target point is calculated by summing the shares. Path ranking can be done by having the share of each path from overall vibration magnitude. Using this method on a sample vehicle, some modification has been proposed to decrease the vibration at target point, and the side effect of the modifications on the powertrain dynamic behavior has been evaluated. The proposed method needs less analysis time than classical TPA methods and its ability in optimization of vibration magnitude at target points is proven.
A. Amini, M. Mirzaei, R. Khoshbakhti Saray,
Volume 3, Issue 4 (12-2013)
Abstract

In spark ignition (SI) engines, the accurate control of air fuel ratio (AFR) in the stoichiometric value is required to reduce emission and fuel consumption. The wide operating range, the inherent nonlinearities and the modeling uncertainties of the engine system are the main difficulties arising in the design of AFR controller. In this paper, an optimization-based nonlinear control law is analytically developed for the injected fuel mass flow using the prediction of air fuel ratio response from a mean value engine model. The controller accuracy is more increased without chattering by appending the integral feedback technique to the design method. The simulation studies are carried out by applying severe changes in the throttle body angle to evaluate the performance of the proposed controller with and without integral feedback. The results show that the proposed controller is more effective than the conventional sliding mode controller in regulating the AFR without chattering.
A. Elfasakhany,
Volume 4, Issue 1 (3-2014)
Abstract

The effects of unleaded gasoline and unleaded gasoline–ethanol blends on engine performance and pollutant emissions were investigated experimentally in a single cylinder, four-stroke spark-ignition engine with variable engine speeds (2600–3500 rpm). Four different blends on a volume basis were applied. These are E0 (0% ethanol + 100% unleaded gasoline), E3 (3% ethanol + 97% unleaded gasoline), E7 (7% ethanol + 93% unleaded gasoline) and E10 (10% ethanol + 90% unleaded gasoline). Results of the engine test indicated that using ethanol–gasoline blended fuels improve output torque, power, volumetric efficiency and fuel consumption of the engine it was also noted that fuel consumption depends on the engine speed rather than the ethanol content for ethanol less than 10% blended ratio. CO and unburned hydrocarbons emissions decrease dramatically as a result of the leaning effect caused by the ethanol addition CO2 emission increases because of the improved combustion.
A. Ghasemian, A. Keshavarz, H. Sotodeh,
Volume 4, Issue 1 (3-2014)
Abstract

The subjects of heat transfer and cooling system are very important topics in the Internal Combustion Engines (ICE). In modern cooling systems, low weight, small size and high compactness are the critical designing criteria that requires heat transfer enhancement. Boiling phenomenon which is occurred in the water jacket of the ICE is one of the methods to increase heat transfer in the coolant system of an ICE. A research has been shown that parameters such as material, temperature, and roughness of the heated surface have direct effect on the rate of heat transfer in a boiling phenomenon. In this paper the potential of boiling phenomenon and the effect of the surface roughness on the amount of heat flux removed by the coolant flow in the engine water jacket is investigated experimentally. For this purpose the experiments was carried out in three different flow velocities and also three different surface roughnesses. Results show that the boiling and roughness of a hot surface will increase the heat removal significantly.
S. Mohammadi, H. Rabbani, S. Jalali Honarmand3,
Volume 5, Issue 3 (9-2015)
Abstract

Among human activities, motor vehicles play the most important role in air pollution. Air pollution has negative impacts on people and on the environment. In this paper the effect of oxygen-enriched air (20.8%, 21.8%, 22.8%, 23.8% and 24.8%) and different bioethanol-gasoline blends (zero, 5%, 10%, 15%, 20% and 25%) in different engine speeds (1000 rpm, 2000 rpm and 3000 rpm) on the amount of pollutants, particles, and fuel consumption were studied. To do so, a four-cylinder, four-stroke gasoline engine with Siemens fueling system was used. The results showed that when oxygen percentage in the inlet increased from 20.8% to 24.8%, the average amount of UHC, CO, fuel consumption and the number of fine and coarse particles decreased 126.75%, 11.25%, 17.02%, 77.37% and 243.25%, respectively, while the amount of CO2 and NOX increased 5.36% and 113.27%, respectively. Also the results showed that when bioethanol percentage in the mixture increased from zero to 25%, the average amount of UHC, CO2, CO and the number of fine and coarse particles decreased 104.53%, 3.45%, 34.57%, 41.42% and 96.09%, respectively, while the amount of NOX and fuel consumption increased 163.41% and 15.75%, respectively.



Page 1 from 3    
First
Previous
1
 

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb