Search published articles


Showing 2 results for Exhaust Emission

Dr Javad Zareei, Abbas Rohani,
Volume 11, Issue 2 (6-2021)
Abstract

Diesel engines are the most trusted sources in the transportation industry. They are also widely used in the urban transportation system. Most pollutants are related to these engines. Therefore, it is important to increase the performance and reduce exhaust emissions of these engines. Alternative fuels are key to meeting upcoming targets.
An experimental and numerical study was performed to investigate the effect of diesel fuel and hydrogen addition to diesel fuel from 0 to 30% on performance and exhaust emissions. Also in this research for changing diesel fuel, an indirect injection engine converted to direct injection engine. The simulation study was conducted by Star cd codes and experimental investigation was carried out on a diesel engine (Perkins 1103A-33TG1), three- cylinders, and four-stroke with maximum engine power 72.3hp at 1800 rpm. The results from this study showed that the increase of hydrogen to diesel fuel improves the thermal efficiency, resulting in lower specific fuel consumption. Also, the results showed that adding hydrogen until 30%, the cylinder pressure increase by about 9% and occurred the delay of peak pressure about 8 degrees of a crank angle compared to diesel fuel. The other obtained results in emission with 30%H2+Diesel showed the soot emission reduced 11.3%, HC and CO reduced nearly 36%, but NOx increased by about 8.3% due to high combustion temperature.
Mani Ghanbari, Lotfali Mozafarivanani, Masoud Dehghanisoufi,
Volume 11, Issue 3 (9-2021)
Abstract

The fuel system in internal combustion engines is one of the most accurate and sensitive parts and its operation has a significant effect on the quality of combustion process and the content of exhaust emissions. In this study, the effect of fuel filter life on lambda and exhaust emissions of engine has been investigated using the response surface method (RSM). The results showed that the elevated values of lambda (1.042) and CO (0.88%) occur at the engine speed of 5000 rpm with a fuel filter life (FFL) of 60,000 km. Also, the highest CO2 content was obtained as 14.9% at 1000 rpm with a new fuel filter (0 km). Moreover, the highest amount of HC emission (215 ppm) was measured at 1000 rpm and using FFL of 60,000 km. The results showed that increasing the fuel filter life increases the exhaust emissions of the engine. Therefore, timely replacement of the fuel filter, in addition to increasing engine performance, will reduce air pollution, especially in big cities. 


Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb