Search published articles


Showing 2 results for Hydraulic Engine Mount

J. Marzbanrad, M.a. Babalooei,
Volume 6, Issue 3 (9-2016)
Abstract

The constitutive relationships of the rubber materials that act as the main spring of a hydraulic engine mount are nonlinear. In addition to material induced nonlinearity, further nonlinearities may be introduced by mount geometry, turbulent fluid behavior, temperature, boundary conditions, decoupler action, and hysteretic behavior. In this research all influence the behavior of the system only certain aspects are realistically considered using the lumped parameter approach employed. The nonlinearities that are readily modeled by the lumped parameter approach constitute the geometry and constitutive relationship induced nonlinearity, including hysteretic behavior, noting that these properties all make an appearance in the load-deflection relationship for the hydraulic mount and may be readily determined via experiment or finite element analysis. In this paper we will show that under certain conditions, the nonlinearities involved in the hydraulic mounts can show a chaotic response.


Prof. M.h. Shojaefard, Mr. M. Maleki, Dr. M. Masih-Tehrani, Mr. A.r. Sang-Sefidi, Mr. M.m. Niroobakhsh,
Volume 8, Issue 2 (6-2018)
Abstract

A combined hydraulic engine mount and buffer is proposed in this study for use in the mid-priced vehicle. In some vehicle design projects, an engine is selected to use in a new car design. To achieve the desired vibration conditions, the mount can be redesigned with exorbitant costs and long-term research. The idea of using a buffer in the combination of the conventional engine mount is to suggest a solution with affordable price which can improve mount vibration specifications. As a case study, the engine of Renault L90 (Dacia Logan), which name is K4M engine, is selected to use in the national B class automotive platform design. This automotive platform is designed at Automotive Engineering Research Center of Iran University of Science and Technology. The hydraulic engine mount is modeled in CATIA. Some tests are done to validate the simulation results. The conventional and buffer-equipped mount characteristics, which are determined by CATIA, is imported to Adams/Vibration software to evaluate the vibration behavior of the engine mounts. The results show that the use of buffer reduces the stiffness of mount, which should be 2 to 3 times lower than engine's frequency excitation. In some directions, the buffer-equipped mount has a better modal energy and isolation characteristics.

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb