Search published articles


Showing 2 results for Model Predictive Control

Behzad Samani, Dr Amir Hossein Shamekhi,
Volume 11, Issue 1 (3-2021)
Abstract

In this paper, an adaptive cruise control system is designed that is controlled by a neural network model. This neural network model is trained with data resulting from the simulation of a multi-objective nonlinear predictive adaptive cruise control system. For this purpose, first, an adaptive cruise control system was designed using the concept of model predictive control based on a nonlinear model to maintain the desired speed of the driver, maintain a safe distance with the car in front, reducing fuel consumption and increasing ride comfort. Due to the time-consuming computations in predictive control systems and the consequent need for powerful and expensive hardware, it was decided to use the extracted data from the simulation of this designed cruise control system to train a neural network model and use this model to achieve control objectives instead of the predictive controller. Using the neural network model in the cruise control system, despite a significant reduction in computation time, the control objectives were well achieved, and in fact a combination of model predictive controller accuracy and neural network controller speed was used.
Mr Seyed Amir Mohammad Managheb, Mr Hamid Rahmanei, Dr Ali Ghaffari,
Volume 14, Issue 1 (3-2024)
Abstract

The turn-around task is one of the challenging maneuvers in automated driving which requires intricate decision making, planning and control, concomitantly. During automatic turn-around maneuver, the path curvature is too large which makes the constraints of the system severely restrain the path tracking performance. This paper highlights the path planning and control design for single and multi-point turn of autonomous vehicles. The preliminaries of the turn-around task including environment, vehicle modeling, and equipment are described. Then, a predictive approach is proposed for planning and control of the vehicle. In this approach, by taking the observation of the road and vehicle conditions into account and considering the actuator constraints in cost function, a decision is made regarding the minimum number of steering to execute turn-around. The constraints are imposed on the speed, steering angle, and their rates. Moreover, the collision avoidance with road boundaries is developed based on the GJK algorithm. According to the simulation results, the proposed system adopts the minimum number of appropriate steering commands while incorporating the constraints of the actuators and avoiding collisions. The findings demonstrate the good performance of the proposed approach in both path design and tracking for single- and multi-point turns.

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb