Search published articles


Showing 1 results for Nonlinear Vehicle Vibration Model Pareto Differential Evolution Multi-Objective Optimization Road Input

Dr. Mohammad Salehpour, Dr. Ahmad Bagheri,
Volume 11, Issue 3 (9-2021)
Abstract

In this study, a multi-objective differential evolution with fuzzy inference-based dynamic adaptable mutation factor with hybrid usage of non-dominated sorting and crowding distance (MODE-FM) is utilized for Pareto optimization of a 5-degree of freedom nonlinear vehicle vibration model considering the five conflicting functions simultaneously, under different road inputs. The significant conflicting objective functions that have been observed here are, namely, vertical seat acceleration, vertical forward tire velocity, vertical rear tire velocity, relative displacement between sprung mass and forward tire and relative displacement between sprung mass and rear tire. Different road inputs are, namely, double-bump, stationary random road and non-stationary random road. It is exhibited that the optimum solutions of 5-objective optimization contain those of 2-objective optimization and, as a result, this important matter creates more options for optimal design of nonlinear vehicle vibration model.

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb