Showing 2 results for Panel
M. Mohseni Kabir, M. Izanloo, Ab. Khalkhali,
Volume 7, Issue 2 (6-2017)
Abstract
Automotive design engineers face the challenging problem of developing products in highly competitive markets. In this regard, using conceptual models in the first step of automotive development seems so necessary. In this paper, to make a body in white conceptual model, an engineering approach is developed for the replacement of beam-like structures, joints, and panels in a vehicle model. The proposed replacement methodology is based on the reduced beam, joint, and panel modeling approach, which involves a geometric analysis of beam member cross-sections and a static analysis of joints. In order to validate the proposed approach, an industrial case-study is presented. Two static load cases are defined to compare the original and the concept model by evaluating the stiffness of the full vehicle under torsion and bending in accordance with the standards used by automotive original equipment manufacturer (OEM) companies. The results show high accuracy of the concept models in comparison with the original model in bending and torsional stiffness prediction.
Mohammad Mahdi Rastegardoost, Sepehr Heydari, Dr. Pouria Ahmadi, Karen Abrinia,
Volume 9, Issue 4 (12-2019)
Abstract
Nowadays, with increasing environmental pollution and damages that threaten the health of the community, a lot of research is being conducted on reducing the emission from transportation sector as one of the main sources of total worldwide emissions. It is confirmed that one of the ways to reduce emission is to switch from fossil-based fuels to more environmentally benign fuels. Among the options, electric vehicles (EVs) have proven themselves as one of the best options. In this research study, a solar-based EV which is developed and built at University of Tehran is studied. The environmental impacts assessment along with the energy consumption of this solar-electric vehicle is investigated