Showing 4 results for Regenerative Braking
M. M. Tehrani, M. R. Hairi-Yazdi, Ba. Haghpanah-Jahromi, V. Esfahanian, M. Amiri, A. R. Jafari,
Volume 1, Issue 2 (6-2011)
Abstract
In this paper, an adaptive rule based controller for an anti-lock regenerative braking system (ARBS) of a series hybrid electric bus (SHEB) has been proposed. The proposed controller integrates the regenerative braking and wheel anti-lock functions by controlling the electric motor of the hybrid vehicle, without using any conventional mechanical anti-lock braking system. The performance of the proposed system is evaluated by a comprehensive vehicle dynamics model in MATLAB/Simulink. Using the designed ARBS, the braking and regenerative performances of SHEB have significantly improved in slippery roads while the slip ratios are kept between 0.15 and 0.20.
Gh.h Payeganeh, M. Esfahanian, S. Pakdel Bonab,
Volume 4, Issue 2 (6-2014)
Abstract
In the present paper, the idea of braking energy regeneration and reusing that energy during acceleration for a refuse truck is comprehended. According to their driving cycle, the refuse trucks have a good potential for braking energy regeneration. On the other hand, hydraulic hybrid is a powertrain with high power density which is appropriate for energy regeneration. In the primary stage of this issue, the hydraulic hybrid propulsion system is designed with intention of regenerating the maximum possible kinetic energy during the refuse truck braking mode. At this stage, a non-fuzzy rule-based control strategy is applied to manage the energy flow in the hybrid powertrain. After that, the powertrain of the Axor 1828 truck and the elements of the hydraulic powertrain are modeled in MATLAB/Simulink. The modeling is performed considering the efficiencies of the powertrain elements. In the last part of the paper, a fuzzy control strategy is designed and modeled to improve the fuel consumption of the truck with hybrid powertrain. In order to see the usefulness of the designed hybrid powertrain, several simulations are organized on the vehicle model in Simulink. The driving cycle for refuse truck in Tehran is used for performing the simulations. The results state indicated that using the hydraulic hybrid powertrain decreased the fuel consumption of the refuse truck by 7 percent. In addition, this amount of reduction was improved by implementing the fuzzy control strategy. The decrease in fuel consumption was due to the regenerating of the braking energy up to 50 percent.
Mohsen Esfahanian, Mohammad Saadat, Parisa Karami,
Volume 8, Issue 3 (9-2018)
Abstract
Hybrid electric vehicles employ a hydraulic braking system and a regenerative braking system together to provide enhanced braking performance and energy regeneration. In this paper an integrated braking system is proposed for an electric hybrid vehicle that include a hydraulic braking system and a regenerative braking system which is functionally connected to an electric traction motor. In the proposed system, four independent anti-lock fuzzy controllers are developed to adjust the hydraulic braking torque in front and rear wheels. Also, an antiskid controller is applied to adjust the regenerative braking torque dynamically. A supervisory controller, is responsible for the management of this system. The proposed integrated braking system is simulated in different driving cycles. Fuzzy rules and membership functions are optimized considering the objective functions as SoC and slip coefficient in various road conditions. The simulation results show that the fuel consumption and the energy loss in the braking is reduced. In the other hand, this energy is regenerated and stored in the batteries, especially in the urban cycles with high start/stop frequency. The slip ratio remains close to the desired value and the slip will not occur in the whole driving cycle. Therefore, the proposed integrated braking system can be considered as a safe, anti-lock and regenerative braking system.
Mr. Alireza Azarm, Dr. Mohsen Esfahanian, Mr. Hosein Hamidi Rad,
Volume 14, Issue 2 (6-2024)
Abstract
The objective of developing kinetic energy recovery systems for vehicles is to repurpose energy otherwise dissipated during braking. Brake energy recovery and storage are achieved through two broad methods: electrical and mechanical, contingent on the energy storage type and the traction system's operational approach. Utilizing a rotating flywheel emerges as a practical, cost-effective, safe, and environmentally friendly means of storing energy, offering an extended service life. This study, synthesizing insights from various theories, aims to devise a prototype brake energy recovery system compatible with Samand car, employing the flywheel tank. Additionally, considerations for the power transmission system and clutch involve designing their type and dimensions, taking many factors into account for the selection. The initial design undergoes simulation and evaluation using MATLAB_SIMULINK and the ADVISOR plugin. The investigation delves into the influence of various design parameters on the efficiency of the system. Subsequently, attempts are undertaken to clarify the factors contributing to varied outcomes. The simulation results indicate a notable decrease in fuel consumption and emissions for a Samand car during urban driving cycles characterized by frequent braking. This improvement is realized through the utilization of a steel flywheel with an incomplete cone geometry and a specified radius. Suggestions are put forth for refining the controller to potentially enhance reductions in fuel consumption and pollution.