S. Sanaye, M. Dehghandokht,
Volume 1, Issue 3 (5-2011)
Abstract
Thermal modeling of an automotive cabin was performed in this paper to predict the inside cabin air temperature. To implement this task, thermal and ventilation loads were estimated and the mass and energy balance conservation equations for dry air and water vapor with considering a new parameter (air circulation ratio) as well as the balance equations of internal components of a cabin were derived and solved simultaneously. The performance of the proposed thermal modeling of a cabin was compared with the data collected from hot room experimental tests. These tests were run for various design parameters such as evaporating cooling load and cabin size (air volume inside cabin). The comparison of experimental and numerical results showed a good agreement.
Parametric analysis with three parameters namely, vehicle speed, number of passengers, and A/C air mass flow rate was performed to investigate the effects of these parameters on cabin air temperature.
Mr Pouriya Rahimirad, Dr. Masoud Masih-Tehrani, Dr. Masoud Dahmardeh,
Volume 9, Issue 2 (6-2019)
Abstract
This paper investigates the effect of temperature on a hybrid energy storage system with various energy management systems. The hybrid energy storage system consists of a fuel cell, ultracapacitor and battery with associated DC/DC and DC/AC converters. The energy management strategies employed are the state machine control strategy, fuzzy frequency/logic decoupling strategy, minimization strategy of equivalent consumption (ECMS) and external energy maximization strategy (EEMS). Initially, a module of 3.3v 2.3Ah LiPo4 batteries consisting of 15 cells in series and 15 rows in parallel are studied without considering the temperature effect. In the next step, the studies are repeated considering the temperature variation effects. The current and SOC associated with the battery, the hydrogen consumption, and battery life are studied for each strategy. The results suggest that the errors associated with the battery life estimation, as well as the battery current are significant with and without considering the temperature effects with the values of 30% and 20%, respectively.