Showing 4 results for Vehicle Model
A. Hemati, M. Tajdari, A.r. Khoogar,
Volume 3, Issue 4 (12-2013)
Abstract
This paper presents a reduce roll vibration of the full vehicle model with passive suspension systems using vibration absorber to change the dynamic system matrix stat’s eigenvalue. Since using the controller system has been splurged and required to energy consuming, in this research the vehicle body roll vibration has been reduced and supplied vehicle stability using a vibration absorber for the passive suspension system. In this paper a new manner is introduced to reduce body roll angle and body's roll acceleration. The transverse instability in the independent suspension is a main problem, roll angle decreased transverse stability, that it has been reduced using vibration absorber. The optimal value of vibration absorber’s mass, spring and damping coefficient has been determined by using genetic algorithms (GA) to achieve developed roll angle behavior. The main purpose of this article is to reduce vehicle body roll angle that has been acquired using vibration absorber, this manner is better than other ways for roll reduction of vehicle body because it has done without any energy consuming.
J. Marzbanrad, S. Jamali Shakhlavi,
Volume 7, Issue 1 (3-2017)
Abstract
In the current paper, a biomechanical model of human body with unique structure is developed for evaluating the biodynamic responses, the vibration transmissibility and the transmitted accelerations to vertical vibration for the seated position with ignoring backrest support. In this regard, the 6-DoF Lumped-parameter model with six concentrated masses which are connected with linear springs and dampers is presented. Further, the full vehicle model is developed in ADAMS/CAR software in order to utilize the accelerations of seat under various roads excitation for different amount of vehicle speeds. Also, the vibration transmissibility and transmitted accelerations in vertical direction are measured for the different segments of human body including: Pelvis, Abdomen and Diaphragm, Chest, Torso, Back, Head and Neck. Finally, vibration transmissibility and transmitted accelerations due to the roughness of the roads surfaces are investigated for the different segments of human body in frequency domain from 0 to 50 Hz. As it is illustrated the maximum values for transmissibility for different body segments occurred for frequencies equivalent 20 to 30 Hz, it can be concluded that the human body is more sensitive to vibration with frequencies under 30 Hz.
M. Salehpour, A. Jamali, A. Bagheri, N. Nariman-Zadeh,
Volume 7, Issue 4 (12-2017)
Abstract
In this paper a new type of multi-objective differential evolution employing dynamically tunable mutation factor is used to optimally design non-linear vehicle model. In this way, non-dominated sorting algorithm with crowding distance criterion are combined to fuziified mutation differential evolution to construct multi-objective algorithm to solve the problem. In order to achieve fuzzified mutation factor, two inputs as generation number and population diversity and one output as the mutation factor are used in the fuzzy inference system. The objective functions optimized simultaneously are namely, vertical acceleration of sprung mass, relative displacement between sprung mass and unsprung mass and control force. Optimization processes have been done in two bi- and three objective areas. Comparison of the obtained results with those in the literature has shown the superiority of the proposed method of this work. Further, it has been shown that the results of 3-objective optimization include those of bi-objective one, and therefore it gives more optimum options to the designer
Mr Arash Darvish Damavandi, Dr Behrooz Mashhdi, Dr Masoud Masih-Tehrani,
Volume 13, Issue 3 (9-2023)
Abstract
This paper investigates the performance of the hydraulically interconnected suspension system with the full vehicle model of ride and handling. A sensitivity analysis has been performed by changing the coefficients of the cylinder and accumulator valves and the initial conditions of the accumulators in the default hydraulic circuits to determine the effect on the frequency and damping of the system response such as roll, pitch, and bounce. This study highlights the importance of the influence of all system parameters to investigate vehicle vibration characteristics. The results provide valuable insights for designers and engineers working on improving automotive suspension system performance. Damping and frequency of modes change up to 179% with the change of cylinder valves and 141% with the change of accumulator valves and 74% for the initial pressure of accumulators change in mentioned range.