Search published articles


Showing 2 results for Vehicle Suspension

M. Kazemi, M. Jooshani,
Volume 2, Issue 4 (10-2012)
Abstract

The suspension system of a vehicle is one of the most important parts which is involved in the process of vehicle designing. When a vehicle suspension system is designed, the evaluation of its performance against the road disturbances such as shocks and bumps are very important. The most commonly used systems consist of four hydraulic Jacks with mobility in vertical line with low speed and low exactitude. This paper offers a new mechanism for inspecting the suspension system of a vehicle using a parallel robot called Stewart. This robot is a special kind of parallel robots with capability of movements in different directions with high speed, accuracy and repeatability. In this paper the suspension system is evaluated on a quarter model of a simulated vehicle with control and guidance of Stewart robot using PID controller. The Stewart robot simulates the isolated and uneven bumps on a flat road in order to evaluate the given suspension system, and to investigate some criteria such as comforting of the passengers and remaining of the vehicle on the road. The results of the simulations show that the proposed method has a high accuracy, applicability and flexibility as well as simplicity, compared to currently used mechanisms.
Hamed Davardoust, Dr. Golamreza Molaeimanesh, Sepehr Mousavi,
Volume 10, Issue 1 (3-2020)
Abstract

Due to the increasing level of air pollution and the reduction of fossil fuels, the need for new technologies and alternative fuels is felt more than ever. Proton exchange membrane fuel cells (PEMFCs) are one of these technologies, which have been of great interest to the researchers due to the benefits of non-contamination, high efficiency, fast start-up, and high power density. The proper functioning of the fuel cell requires thermal management and water management within the cells. To this end, in this work, the effect of different parameters on the performance of PEM fuel cell was investigated. The results demonstrated that the performance of the cell increases with increasing the pressure in the low current densities, while in the high current density, performance decreases with increasing the pressure of the cell. Also, the study of the effect of relative humidity shows that increasing the relative humidity of the cathode does not have much effect on the performance of the cell while increasing the relative humidity of the anode improves the performance of the cell.

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb