Search published articles


Showing 2 results for Robust Control

Hamed Davardoust, Dr. Golamreza Molaeimanesh, Sepehr Mousavi,
Volume 10, Issue 1 (3-2020)
Abstract

Due to the increasing level of air pollution and the reduction of fossil fuels, the need for new technologies and alternative fuels is felt more than ever. Proton exchange membrane fuel cells (PEMFCs) are one of these technologies, which have been of great interest to the researchers due to the benefits of non-contamination, high efficiency, fast start-up, and high power density. The proper functioning of the fuel cell requires thermal management and water management within the cells. To this end, in this work, the effect of different parameters on the performance of PEM fuel cell was investigated. The results demonstrated that the performance of the cell increases with increasing the pressure in the low current densities, while in the high current density, performance decreases with increasing the pressure of the cell. Also, the study of the effect of relative humidity shows that increasing the relative humidity of the cathode does not have much effect on the performance of the cell while increasing the relative humidity of the anode improves the performance of the cell.
Dr Hossein Chehardoli,
Volume 13, Issue 3 (9-2023)
Abstract

In this article, the optimal robust H2 / H control of self-driving car platoons (SDCPs) under external disturbance is investigated. By considering the engine dynamics and the effects of external disturbance, a linear dynamical model is presented to define the motion of each self-driving car (SDC). Each following SDC is in direct communication with the leader. By utilizing the relative position of following SDCs and the leader, the error dynamics of each SDC is calculated. The particle swarm optimization (PSO) method is utilized to find the optimal control gains. To this aim, a cost function which is a linear combination of H2 and H norms of the transfer function between disturbance and target variables is constructed. By employing the PSO method, the cost function will be minimized and therefore, the robustness of the controller against external disturbance is guaranteed. It will be proved that under the presented robust control method, the negative effects of disturbance on system performance will significantly reduce. Therefore, the SDCP is internally stable and subsequently, each SDC tracks the motion of the leader. In order to validate the proposed method, simulation examples will be presented and analyzed.

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb