Showing 24 results for Simulation
M. H. Askari, S. M. Hoseinalipour, S. A. Jazayeri, M. Baghsheikhi,
Volume 1, Issue 2 (6-2011)
Abstract
The HCCI combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis HCCI combustion. A single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. In this study a single-zone thermodynamic model with detail chemical mechanism is developed to investigate the effect of hydrogen addition to natural gas in a homogeneous charge compression ignition combustion and to analyze the performance and emissions of the HCCI engine. The effect of five different percentage of hydrogen added to natural gas ranging from 0 to 40 on HCCI combustion is investigated in this study. The results indicate that by increasing hydrogen portion in intake mixture, start of combustion advances and maximum temperature increase, but increasing in maximum pressure is negligible. Carbon’s included emissions such as Co, Co2 and unburned hydrocarbons decreases by increasing of hydrogen, and also, specific fuel consumption decreases. The result shows that hydrogen improves combustion characteristics of natural gas in an HCCI engine and leads to better performance and less emissions.
M. Shahab, M. Moavenian,
Volume 2, Issue 2 (4-2012)
Abstract
Vehicle driveline system and its working accuracy play an important role in the performance of car. The purpose of
this study is to provide an appropriate mechanism for investigating, identifying and determining the position and size
of defects in the vehicle power transmission system. This is based on the patterns of the residual signal, obtained from
a simulated model of the system. Neuro-fuzzy networks have been used in diagnosis of defects because of its specific
advantages and capabilities in pattern recognition. Simulation results demonstrate that the resulting fault detection
system is able to properly locate the fault types under all test conditions, and is sensitive also to fault size. Test and
simulation results using MATLAB software is given at the end.
B. Jafari, D. Domiri Ganji,
Volume 3, Issue 2 (6-2013)
Abstract
Air pollution is one of the major issues about the diesel engines in todays' world. It is a special concern in
those areas that have difficulty meeting health-based outdoor air quality standards. Natural gas has low
emission and resource abundance and also conventional compression ignition engine can be easily
converted to a dual fuel mode to use natural gas as main fuel and diesel as pilot injection. The main object
of this work is to investigate the effect of number of injector nozzle hole on the combustion and exhaust
emission in a gas engine ignited with diesel fuel. We use one and three-dimensional simulation in parallel
way in order to analyze the performance and combustion process of a dual fuel engine. The experimental
results have also reported and compared with the simulated data.
S. Jafarmadar, M. Khanbabazadeh,
Volume 3, Issue 2 (6-2013)
Abstract
In the present work, multidimensional modeling of open-cycle process of OM355 engine was developed.
Calculations for computational mesh were carried out. The results of the model were validated by
experimentally measured in-cylinder pressure and the good agreement between calculations and
measurements approved the trustworthy of numerical code. Results included pressure, temperature,
emission and Rate of heat release diagrams were represented for the full cycle. Furthermore local flow field
velocity vectors were indicated. The results show the importance of open-cycle simulations in automotive
researches.
A. Khalkhali, V. Agha Hosseinali Shirazi, M. Mohseni Kabir,
Volume 3, Issue 2 (6-2013)
Abstract
One of the most important structural components of engine compartment assembly in a car body is the Srail. S-rails has significant role in absorbing energy during crash events and therefore it is designed for efficient behavior in such conditions. Driving the peak crushing force of the S-rails is one of the important objectives in the design process of such structures. Peak crushing force is exactly the force applied to the downstream components and then will be transferred to the cabin of vehicle. In this paper, closed form solution is performed to drive the peak crushing force of the S-rails. Results of such analytical model finally are compared with the results of finite element simulation. Good agreement between such results shows the accuracy of the proposed analytical model.
A. Mirmohammadi, F. Ommi,
Volume 3, Issue 3 (9-2013)
Abstract
The purpose of present paper is simulation a direct injection stratified charge natural gas engine. The
KIVA-3V code was used for gaseous fuel injection simulation. Compression and expansion stroke of
engine cycle is simulated using KIVA-3V code. In cylinder fuel equivalence ratio distribution criterion is
used for studying mesh independency. The results show that 550000 cells number is sufficient. The
amount of NO emission in the end of closed cycle simulation was found equal 674.875 ppm and In cylinder
pressure versus engine crank angle degree was simulated that maximum value found in 366 oCA that equal
to 27.3222 bar.
E. Masoumi Khalil Abad, A. Ghazanfari, R. Hashemi,
Volume 3, Issue 4 (12-2013)
Abstract
In this study, an extended stress-based forming limit diagram (FLD) for prediction of necking based on the
Marciniak and Kucznski (M-K) model is represented and applied in tube hydroforming. The bulge forming
of a straight tube is simulated by finite element method and verified with published experimental data. This
adaptive simulation technique is based on the ability to detect the onset and growth of defects (e.g., bursting
and wrinkling) and to promptly readjust the loading paths. Thus, a suitable load path is determined by
applying Adaptive Simulation Method in ANSYS Parametric Design Language (APDL).
S. A. Milani, S. Azadi,
Volume 4, Issue 4 (12-2014)
Abstract
Nowadays, the use of small vehicles is spreading among urban areas and one sort of these vehicles are three-wheeled vehicles (TWVs) which can be competitive with four-wheeled urban vehicles (FWVs) in aspects such as smallness, simple manufacturing, and low tire rolling resistance, fuel consumption and so on. The most critical instability associated with TWVs is the roll over. In this paper a tilt control mechanism has been modeled which can reduce the danger of roll over by leaning the vehicle towards the turning center in order to decrease the amount of lateral load transfer (LLT), and by doing so, system combines the dynamical abilities of a passenger car with a motorcycle. A 3 degree of freedom vehicle model is simulated at constant speed in MATLAB-Simulink environment and a fuzzy algorithm is developed to control such a non-linear system with appropriate tilting torque. Results are interpreted in presence and absence of controller with different longitudinal speeds and steering inputs the results are also compared to behavior of a similar FWV and this is concluded that the tilt control system could countervail deficiencies of the TWV compared to the FWV.
H. Golbakhshi, M. Namjoo,
Volume 5, Issue 2 (6-2015)
Abstract
The viscoelastic effect of rubber material on creation of rolling resistance is responsible for 10-33% dissipation of supplied power at the tire/road interaction surface. So, evaluating this kind of loss is very essential in any analysis concerned with energy saving. The transient dynamic analysis for including the rolling effects of the tire requires long CPU time and the obtained results are prone to considerable numerical oscillations. By adding the equivalent loads to static interaction of tire with the road, an efficient 3D FE analysis is presented for evaluating the dissipated energy of a rolling tire. The results closely match the related experimental and numerical investigations.
A. Mirmohamadi, Sh. Alyari Shoreh Deli, A. Kalhor,
Volume 6, Issue 1 (3-2016)
Abstract
According to the Global Fuel Crisis, it seems necessary to use alternative fuel instead of gasoline. Since the natural gas is cheaper, have higher frequency than gasoline and less pollution, it is a suitable fuel. Many efforts have been done in order to replace gasoline with natural gas. One of the methods is to inject natural gas and gasoline fuel simultaneously and to use the benefits of both fuels. The purpose of this paper is studying natural gas and gasoline blend effect on engine power, torque and emissions. The simulated model was validated in different engine RPMs for gasoline and natural gas, were separately injected into the engine at full load condition. The results of simulation was had good agreement with experiments. The results show that by natural gas and gasoline Simultaneous injection power and torque have been reduced. NOX, HC and CO2 Pollutants change periodically, but their production level is generally lower than gasoline mode, but the CO pollutant increases.
M. Siavashi,
Volume 6, Issue 2 (6-2016)
Abstract
In this study, a numerical computational fluid dynamics study is conducted in order to predict the aerodynamic forces on the NP car. The turbulent air flow around the car is modeled using the realizable k-ε model. First, results are validated against those presented for the Ahmed’s body. Next, the fluid flow around the car is simulated for different car speeds ( to mph) and flow directions ( to degree) and the drag and lift forces and coefficients are calculated. Increasing the car speed leads to increase of the drag and lift forces. While, the drag and lift coefficients of the car for all studied speeds are almost constant and are respectively equal to . and . . In addition, for different flow directions the drag coefficient would increase up to . . Also, the effect of mirrors on the drag force is investigated. Results reveal that removing the mirrors leads to approximately reduction in the drag force with no significant reduction in the drag coefficient. Furthermore, the effect of car elevation on the drag and lift forces is analyzed. It has been shown that when the car elevation decreases up to mm, the drag force will decrease more than , and the drag and lift coefficients are still constant. Keywords: road sign detection, text detection, object detection from video, fuzzy logic, MSER
A.h Kakaee, Sh. Mafi,
Volume 7, Issue 3 (9-2017)
Abstract
In this paper we aim to develop a predictive combustion model for a turbocharged engine in GT-Power software to better simulate engine characteristics and study its behavior under variety of conditions. Experimental data from combustion was initially being used for modelling combustion in software and these data were used for model calibration and result validation. EF7-TC engine was chosen for this research which is the first turbocharged engine designed and developed by IKCO and IPCO in Iran. After analyzing necessary theories for predictive combustion model and required steps for calibration of CombSITurb model in software, one final set of multipliers were calculated based on different sets derived for each engine speed and engine operation was simulated with this combustion model. In addition to improved predictability of engine model, comparing results of predictive model with non-predictive model shows better accuracy especially at lower engine speeds and less tolerance of results for each engine speed.
Vahid Tavoosi, Dr Javad Marzban Rad, Dr Ramazan Mirzaei,
Volume 8, Issue 2 (6-2018)
Abstract
Vertical dynamics modeling and simulation of a
six-wheel unmanned military vehicle (MULE) studied in this paper. The Common Mobility Platform (CMP) chassis provided mobility, built around an advanced propulsion and articulated suspension system gave the vehicle ability to negotiate complex terrain, obstacles, and gaps that a dismounted squad would encounter. Aiming at modeling of vehicle vertical dynamics, basic and geometrical parameters defined and degrees-of-freedom specified on a compromise between accuracy and complexity of two models. Equations of motion provided on two linear and nonlinear 5-degree-of-freedom models using two different modeling methods. There is good agreement between time responses of two presented models. The main differences of two models observed in articulated suspension degrees-of-freedom while the vehicle subjected to high frequency maneuvers that cause severe oscillations on wheels and arms in comparison to vehicle body due to lower mass and inertia properties. The linear model can be used to design a controller and the nonlinear to predict vehicle motion more accurately. Sensitivity analysis of the influential parameters is also presented to specify effects of different parameters. Results of this study may be used to design articulated suspension and making next frequency analyses.
Hesam Moghadasi, Sasan Asiaei,
Volume 8, Issue 3 (9-2018)
Abstract
This paper investigates 3D simulation of fluid flow in a centrifugal pump from the Detroit Diesel company to extract possible engine cooling trends. The velocity and pressure profile of water, the coolant, is analyzed and the characteristic curves of the pump are derived. This provides a useful evaluation of the pump performance at all working conditions. For this aim, a computational fluid dynamic model is developed using ANSYS CFX for a wide span of flow rates and a number of shaft angular velocities. The variation of constituting parameters are examined using dimension-less descriptive parameters of flow, head and power coefficients, finally, the efficiency of the pump is examined. In this analysis, sst-k-w turbulent model is employed which is a combination of two different models for pumps and turbomachines. Numerical results show that prolonged cooling duty cycles of the vehicle should accompany a flow factor of 10%. In addition, the peak of the vehicle’s loading should match the maximum efficiency of the pump that can be increased to 62% by augmentation of flow rate and flow coefficient.
Sina Hassanzadeh Saraei, Shahram Khalilarya, Samad Jafarmadar, Saeed Takhtfirouzeh, Hadi Taghavifar,
Volume 8, Issue 4 (12-2018)
Abstract
Pollutant emissions from diesel engines are significantly affected by fuel injection strategies that could reduce NOx and Soot emissions. For the first time and in this study, numerical simulations were performed to consider the influences of changing the injection duration in each pulse of the double injection strategies on in-cylinder parameters and pollutant emissions. Results confirmed that double injection strategies could influence the in-cylinder temperature, which leads to a reduction in NOx and soot emissions. Additionally, it is seen that decreasing the injection duration could increase the in-cylinder peak pressure and temperature. It could also reduce the soot emission owing to the better fuel atomization. Moreover, RATE+0.5CA case, which injection duration for each pulse increases 0.5 CA, was selected to be the optimum case in reduction of pollutant emissions.
Dr Amirhasan Kakaee, Mr Mohammadreza Karami,
Volume 9, Issue 2 (6-2019)
Abstract
In this study, modeling of a fuel jet which has been injected by high pressure into a low-pressure tank are investigated. Due to the initial conditions and the geometry of this case and similar cases (like CNG injectors in internal combustion engines (ICE)), the barrel shocks and Mach disk are observed. Hence a turbulence and transient flow will be expected with lots of shocks and waves. According to the increasing usage of this type of injectors in ICE, more studies should be conducted to find the most accurate and beneficial models for modeling this phenomenon.
In order to find an accurate and beneficial turbulence model ,in this study, three Reynolds-averaged Navier–Stokes (RANS) turbulence models (SST k-ω, RNG and standard k ) and large eddy simulation (LES) turbulence model were compared by the fuel jet characteristics in three regions (outlet of the nozzle, at Mach disk and at the downstream of the flow). Although the LES model needs more time for each test, the results are more reliable and accurate. On the other hand, RANS turbulence models have lots of errors (more than 10 percent) especially for predicting the characteristics of fuel jet at Mach disk.
Prof Majid Moavenian, Mr Sina Sadeghi Namaghi,
Volume 9, Issue 3 (9-2019)
Abstract
Most of drivers have to compensate small directional deviations from the desired driving path when disturbances such as crosswinds, overtakings, road irregularities and unintended driver inputs are imposed. These types of deviations have a tiring effect on driver and traffic’s safety and should be minimised. To increase the understanding the influence of vehicle’s properties in crosswind and overtaking conditions, specially vans and buses, and improving their safety, the vehicle was modeled using parameters based on real vehicle data for simulation in CarSim program. These parameters were validated or edited by simulation programs such as SOLIDWORKS, ADAMS/CAR ADAMS/CHASSIS and Well-known Calculation Software . A method for estimating the lateral error of vehicle due to original path in crosswind and overtaking conditions is also presented using Multi-Step Taguchi method in MINITAB. Dealing with limited but most effective factors of Vehicle’s Properties instead of large variety of them can be used for optimal vehicle’s design and propose ideal Crosswind Controllers
Mr Sina Sadeghi Namaghi, Mr Nima Sadeghi Namaghi,
Volume 9, Issue 4 (12-2019)
Abstract
Heavy articulated vehicles have low performance with respect to stability analysis due to their multifaceted geometry and dynamics especially when it comes to non-linear maneuvers. In this study in order to find out which statistical and dynamical factors have the most effect on stability of this type of vehicle without getting involve with their complex mathematical theory, combination of drive simulation and Taguchi method is used. Since the number and variety of factors are extensive, multi-step Taguchi method used. This method applied on values of modified rearward amplifications of each units of vehicle as a criterion of lateral stability. Results show the high effect of suspension and load geometry of Vehicle Units on lateral stability and safety.
Mr Amirhasan Kakaee, Mr Milad Mahjoorghani,
Volume 10, Issue 2 (6-2020)
Abstract
Intake and exhaust manifolds are among the most important parts in engine in which pressure loss phenomena has direct impact on with changing volumetric efficiency. In typical 1D simulation codes, the quantity of pressure loss is proportional to the fluid’s mean velocity by Pressure Loss Coefficient (Kp) value. This important coefficient which has substantial rule in engine simulation is usually determined using constant available values, extracted from complicated experiments (like Miller’s tests) in a specified situation. But these values are credible only in situations according to those tests. Coupling 3D simulations with 1D codes is a common method to gain accurate values of these coefficients but this deals with drastic high simulation costs. To address this problem, a more efficient way is replacing an algebraic relation, extracted from 3D calculations, instead of a constant value in 1D code. It’s obvious that in order to reach accurate coefficients in arbitrary conditions (geometric and flow specifications) determining the best numerical method is mandatory. In present research, after investigating all 3D simulation aspects, six different selected numerical solutions have been implemented on four different bends in ANSYS Fluent.Results have been validated by comparing loss coefficient values of incompressible fluid (water) with Miller loss coefficient values and method with the most accurate and stable results has been discovered. It was found that all these methods are suitable in general (with less than 5% error in coefficient values) but solutions with structured grid and SST k-ω turbulence modeling represented better stability and accuracy.
Mr. Vahid Manshaei, Dr. Mohammad Javad Noroozi, Mr. Ali Shaafi,
Volume 10, Issue 2 (6-2020)
Abstract
In this research, the separate and simultaneous effects of pilot-main injection dwell time, pilot fuel quantity, and hydrogen gas addition on combustion characteristics, emissions formation, and performance in a heavy-duty diesel engine were investigated. To conduct the numerical study, valid and reliable models such as KH-RT for the break-up, K-Zeta-F for turbulence, and also ECFM-3Z for combustion were used. The effects of thirty-one different strategies based on two variables such as pilot-main injection dwell time (20, 25, 30, 35, and 40 CA) and pilot fuel quantity (5, 10, and 15% of total fuel per cycle) on NDC and DHC were investigated. The obtained results showed that by decreasing pilot-main injection dwell time due to shorter combustion duration and higher MCP, MCT, and HRRPP, amounts of CO and soot emissions decreased at the expense of high NOx formation. Also, increasing pilot fuel quantity due to higher combustion temperature and less oxygen concentration for the main fuel injection event led to an increase of NOx and soot emissions simultaneously. The addition of H2 due to significant heating value has increased IP and improved ISFC at the expense of NOx emissions but considerably decreased CO and soot emissions simultaneously.