Volume 10, Issue 3 (September 2012)                   IJCE 2012, 10(3): 189-200 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kaveh A, Sabzi O. Optimal design of reinforced concrete frames Using big bang-big crunch algorithm. IJCE 2012; 10 (3) :189-200
URL: http://ijce.iust.ac.ir/article-1-572-en.html
Abstract:   (19799 Views)

In this paper a discrete Big Bang-Big Crunch algorithm is applied to optimal design of reinforced concrete planar frames under

the gravity and lateral loads. Optimization is based on ACI 318-08 code. Columns are assumed to resist axial loads and bending

moments, while beams resist only bending moments. Second-order effects are also considered for the compression members, and

columns are checked for their slenderness and their end moments are magnified when necessary. The main aim of the BB-BC

process is to minimize the cost of material and construction of the reinforced concrete frames under the applied loads such that

the strength requirements of the ACI 318 code are fulfilled. In the process of optimization, the cost per unit length of the sections

is used for the formation of the subsequent generation. Three bending frames are optimized using BB-BC and the results are

compared to those of the genetic algorithm.

Full-Text [PDF 489 kb]   (5616 Downloads)    
Type of Study: Research Paper | Subject: Structure- Concrete

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb