In this paper a discrete Big Bang-Big Crunch algorithm is applied to optimal design of reinforced concrete planar frames under
the gravity and lateral loads. Optimization is based on ACI 318-08 code. Columns are assumed to resist axial loads and bending
moments, while beams resist only bending moments. Second-order effects are also considered for the compression members, and
columns are checked for their slenderness and their end moments are magnified when necessary. The main aim of the BB-BC
process is to minimize the cost of material and construction of the reinforced concrete frames under the applied loads such that
the strength requirements of the ACI 318 code are fulfilled. In the process of optimization, the cost per unit length of the sections
is used for the formation of the subsequent generation. Three bending frames are optimized using BB-BC and the results are
compared to those of the genetic algorithm.
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |