Search published articles


Showing 2 results for Alamatian

E. Alamatian, M. R. Jaefarzadeh,
Volume 10, Issue 1 (March 2012)
Abstract

In this article, the two-dimensional depth-averaged Saint Venant equations, including the turbulence terms, are solved in a

supercritical flow with oblique standing waves. The algorithm applies the finite volume Roe-TVD method with unstructured

triangular cells. Three depth-averaged turbulence models, including the mixing length, k-&epsilon and algebraic stress model (ASM),

are used to close the hydrodynamic equations. The supercritical flow in a channel downstream from a side-baffle in plan is then

simulated, and the numerical results are compared with the data obtained from a laboratory model. The application of different

models demonstrates that the consideration of turbulence models improves the results at the shock wave positions. The qualitative

study of the results and error analysis indicates that the ASM offers the most desirable solutions in comparison with the other

models. However, our numerical experiments show that, amongst the source term components, the negligence of turbulence terms

produces the least error in the depth estimation in comparison with the removal of the bed slope or bed friction terms.


M. Salamatian, A. R. Zarrati, S. A. Zokaei, M. Karimaee,
Volume 11, Issue 3 (Transaction A: Civil Engineering, September 2013)
Abstract

The efficiency of a collar in reducing the scour depth around circular and rectangular piers is studied at different flow intensities (ratio of upstream shear stress to sediment critical shear stress). Rectangular Piers aligned with the flow as well as skewed at 5º, 10º, 20º were examined. Previous studies had shown that with collar the equilibrium time of scouring increases considerably. To reduce the time of experiments low density sediment was used as the bed materials. Comparison between test results and available results with natural sediment showed that, though the relative equilibrium depths were approximately similar, the time to reach equilibrium condition diminished to less than 10 hours with low density sediment. Experimental results for circular and aligned rectangular pier showed that at u*/u*c=0.95 to 0.75 the collar could reduce the maximum scour hole from about 20% to 60% respectively. In rectangular pier, by increasing the skew angle and/or the flow intensity, the efficiency of collar decreased.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb