Fabrizio Palmisano, Angelo Elia,
Volume 12, Issue 2 (Transaction A: Civil Engineering, June 2014)
Abstract
The increase in the computational capabilities in the last decade has allowed numerical models to be widely used in the analysis, leading to a higher complexity in structural engineering. This is why simple models are nowadays essential because they provide easy and accessible understanding of fundamental aspects of the structural response. Accordingly, this article aims at showing the utility and effectiveness of a simple method (i.e. the Load Path Method) in the interpretation of the behaviour of masonry buildings subjected to foundation settlements due to landslide. Models useful for understanding brick-mortar interface behaviour as well as the global one are reported. The global proposed approach is also validated by using Bi-directional Evolutionary Structural Optimization method.
Moreover, drawing inspiration from a case study, the article shows that the proposed approach is useful for the diagnosis of crack patterns of masonry structures subjected to landslide movements.
Ziba Fazel, Masoome Fazelian, Dr. Hamed Sarkardeh,
Volume 15, Issue 2 (Transaction A: Civil Engineering 2017)
Abstract
Air-water flow is a complex and challenging subject in many engineering fields as well as hydraulic engineering and discovery of its characteristics can help the engineers to predict and analyze a probable phenomenon. In the present paper, development of a device capable of measuring the flow velocity, air concentration, diameter and counts of bubbles in air-water flows is described. The heart of the present device is two resistive probes with a novel configuration. Being pressure and corrosion resistant and also having negligible resistivity in the flow are some of the unique features of the employed needles. Moreover, sampling frequency and time can be set for the intended application by the user. In the present electronic board, maximum available sampling frequency is in the order of KHz, while the time of sampling is not limited. The circuit is designed with ability for avoiding the polarization of the probe tip. Increasing the number of probes up to four which can operate together and suitable for more complex flows with no change in the electronic board is another advantage of the proposed device. Different tests for verification of the device accuracy have been performed and good results were reported for measurements.