Search published articles


Showing 4 results for Eshghi

S. Eshghi, V. Zanjanizadeh,
Volume 5, Issue 3 (September 2007)
Abstract

This paper presents an experimental study on seismic repair of damaged square reinforced concrete columns with poor lap splices, 90-degree hooks and widely spaced transverse bars in plastic hinge regions according to ACI detailing (pre.1971) and (318-02) using GFRP wraps. Three specimens were tested in “as built” condition and retested after they were repaired by glass fiberreinforced plastic sheets. They were tested under numerous reversed lateral cyclic loading with a constant axial load ratio. FRP composite wraps were used for repairing of concrete columns in critically stressed areas near the column footings. Physical and mechanical properties of composite wraps are described. Seismic performance and ductility of the repaired columns in terms of the hysteretic response are evaluated and compared with those of the original columns. The results indicated that GFRP wraps can be an effective repair measure for poorly confined R/C columns due to short splice length and widely spaced ties with 90-degree anchorage hooks. Both flexural strength and ductility of repaired columns were improved by increasing the existing confinement in critical regions of them.
Sassan Eshghi, Khashaiar Pourazin,
Volume 7, Issue 1 (March 2009)
Abstract

Confined masonry buildings are used in rural and urban areas of Iran. They performed almost satisfactory

during past moderate earthquakes of Iran. There is not a methodology in Iranian Seismic Code (Standard 2800-3rd

edition) to estimate their capacities quantitatively. In line with removing this constraint, an attempt is made to study

in-plane behavior of two squared confined masonry walls with and without opening by using a numerical approach.

These walls are considered based on Iranian Seismic Code requirements. Finite element 2D models of the walls are

developed and a pushover analysis is carried out. To model the non-linear behavior of the confined masonry walls, the

following criteria are used: (1) The Rankine-Hill yield criterion with low orthotropic factor to model the masonry

panel (2) The Rankine yield criterion to model reinforced concrete bond-beams and tie-columns (3) The Coulomb

friction criterion with tension cutoff mode to model the interface zone between the masonry panel and reinforced

concrete members. For this purpose, the unknown parameters are determined by testing of masonry and concrete

samples and by finite element analysis. Comparing the results show that the initial stiffness, the maximum lateral

strength and the ductility factor of walls with and without opening are different. Also, the severe compressed zones of

the masonry panels within the confining elements are found different from what are reported for the masonry panels

of infilled frames by other researchers. This study shows that a further investigation is needed for estimating capacity

of confined masonry walls with and without opening analytically and experimentally. Also where openings, with

medium size are existed, the confining elements should be added around them. These issues can be considered in the

next revisions of Iranian Seismic Code.


A.r. Khaloo, I. Eshghi, P. Piran Aghl,
Volume 8, Issue 3 (September 2010)
Abstract

In this paper the response of cantilevered reinforced concrete (RC) beams with smart rebars under static lateral loading has been numerically studied, using Finite Element Method. The material used in this study is SuperelasticShape Memory Alloys (SE SMAs) which contains nickel and titanium elements. The SE SMA is a unique alloy that has the ability to undergo large deformations and return to their undeformed shape by removal of stresses. In this study, different quantities of steel and smart rebars have been used for reinforcement andthe behavior of these models under lateral loading, including their load-displacement curves, residual displacements, and stiffness, were discussed. During lateral loading, rebars yield or concrete crushes in compression zone in some parts of the beams and also residual deflections are created in the structure. It is found that by using SMA rebars in RC beams, these materials tend to return to the previous state (zero strain), so they reduce the permanent deformations and also in turn create forces known as recovery forces in the structure which lead into closing of concrete cracks in tensile zone. This ability makes special structures to maintain their serviceability even after a strong earthquake


Nader Shariatmadari, Behnam Askari Lasaki, Hasan Eshghinezhad, Behzad Askari,
Volume 14, Issue 7 (Transaction B: Geotechnical Engineering 2016)
Abstract

The main purpose of this study is to investigate the influence of urban solid waste leachate on the mechanical properties of the soil. Order to provide a more accurate identification of the contaminated soils, Cylindrical specimens of the soil, according to the density curves with different initial conditions (different initial contamination levels) were prepared, then the soil specimens were loaded at different load levels using a direct shear testing equipment and a universal testing machine to apply axial compression on the specimens. By analyzing the results, the stress-strain and failure behavior of the soil specimens containing different percentages of the solid waste leachate was evaluated. The most important result was reducing the mechanical properties of the soil contaminated with different percentages of solid waste. The results of adding lower quantities of leachate, is far more significant compared to the received results from adding higher amounts of leachate.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb