A. R. Rahai, S. Fallah Nafari,
Volume 11, Issue 4 (Transaction A: December 2013)
Abstract
The seismic behavior of frame bridges is generally evaluated using nonlinear static analysis with different plasticity
models hence this paper tends to focus on the effectiveness of the two most common nonlinear modeling approaches
comprising of concentrated and distributed plasticity models. A three-span prestressed concrete frame bridge in Tehran, Iran,
including a pair of independent parallel bridge structures was selected as the model of the study. The parallel bridges were
composed of identical decks with the total length of 215 meters supported on different regular and irregular substructures with
non-prismatic piers. To calibrate the analytical modeling, a large-scale experimental and analytical seismic study on a two-span reinforced concrete bridge system carried out at the University of Nevada Reno was used. The comparison of the results
shows the accuracy of analytical studies. In addition, close correlation between results obtained from two nonlinear modeling
methods depicts that the lumped plasticity approach can be decisively considered as the useful tool for the nonlinear modeling
of non-prismatic bridge piers with hollow sections due to its simple modeling assumption and less computational time.