Search published articles


Showing 2 results for Hassani

Mohammad Naisipour, Mohammad Hadi Afshar, Behrooz Hassani, Ali Rahmani Firoozjaee,
Volume 7, Issue 1 (March 2009)
Abstract

A meshless approach, collocation discrete least square (CDLS) method, is extended in this paper, for solving

elasticity problems. In the present CDLS method, the problem domain is discretized by distributed field nodes. The field

nodes are used to construct the trial functions. The moving least-squares interpolant is employed to construct the trial

functions. Some collocation points that are independent of the field nodes are used to form the total residuals of the

problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of the

residuals for the collocation points. The final stiffness matrix is symmetric and therefore can be solved via efficient

solvers. The boundary conditions are easily enforced by the penalty method. The present method does not require any

mesh so it is a truly meshless method. Numerical examples are studied in detail, which show that the present method

is stable and possesses good accuracy, high convergence rate and high efficiency.


A. Hassanipour, A. Shafiee, M.k. Jafari,
Volume 9, Issue 4 (December 2011)
Abstract

Shear modulus and damping ratio are important input parameters in dynamic analysis. A series of resonant column tests was

carried out on pure clays and sand-clay mixtures prepared at different densities to investigate the effects of aggregate content,

confining stress, void ratio and clay plasticity on the maximum shear modulus and minimum damping ratio. Test results revealed

an increase in the maximum shear modulus of the mixture with the increase in sand content up to 60%, followed by a decrease

beyond this value. It was also found that the maximum shear modulus increases with confining stress, and decreases with void

ratio. In addition, minimum damping ratio increases with sand content and clay plasticity and decreases with confining stress.

Finally, on the basis of the test results, a mathematical model was developed for the maximum shear modulus.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb