A. Ghanbari, E. Hoomaan, M. Mojallal,
Volume 11, Issue 1 (Transaction B: Geotechnical Engineering, May 2013)
For calculating the natural frequency of structures such as buildings, chimneys, bridges and silos appropriate analytical
formulas exist. However, in the case of retaining walls undergoing the soil pressure at one side, calculating the natural frequency
is not a straightforward task and requires the effects of soil-structure interactions to be considered. By modeling the soil as series
of linear springs, a new formulation is presented in this article, to calculate the natural frequency of retaining walls. This formula
considers the vertical cross sectional width change, and hence, enables us to calculating the natural frequency of retaining walls
with different types of backfill. The geometrical properties of the retaining walls and its bending rigidity together with the soil’s
modulus of elasticity and its Poisson’s ratio are the most important parameters to calculate. A comparison of the results for
retaining walls with constant cross section obtained from the suggested method with those of the software analyses was carried
out and good agreement was detected. A second comparison of the results with those of other researchers revealed that the natural
frequency of flexible retaining wall is an upper bound for natural frequency of rigid walls. The Selected shape function is also
very close to the real shape mode.