Search published articles


Showing 9 results for Qi

D. P. Chen, C. X. Qian, C. L. Liu,
Volume 8, Issue 4 (December 2010)
Abstract

 Concrete deformation due to temperature and moisture condition will always develop simultaneously and interactively. The environmentally (hygral and thermally) induced stress and deformation are essential to concrete durability. To simulate the deformation of concrete caused by the coupling effect of temperature and moisture, a numerical simulation approach is proposed comprising analytical process and finite element analysis is proposed based on the mechanism of heat and moisture transfer in porous medium. In analytical method, Laplace transformation and transfer function were used to simplify and solve the coupled partial differential equations of heat and moisture transfer. The hygro-thermal deformation of concrete is numerically simulated by finite element method (FEM) based on the obtained temperature and moisture stress transformed from the solved moisture distribution. This numerical simulation approach avoids the complex eigenvalues, coupling difficulty and low accuracy in other solving method, and also effectively calculates the moisture induced shrinkage which is almost impossible using familiar FEM software. Furthermore, a software named Combined Temperature and Moisture Simulation System for concrete (CTMSoft) was represented and developed by a mix programming of Visual Basic, Matlab and ANSYS. CTMSoft provided a simple and more intuitive interface between user and computer by providing a graphical user interface (GUI). The validity of the numerical simulation approach was verified by two cases analysis.


H. Qi, D. Wang, P. Chen, Y. M. Bie,
Volume 12, Issue 3 (Transaction A: Civil Engineering September 2014)
Abstract

A structural model for urban arterial road is proposed. It describes the road traffic dynamics in a disaggregated way. The structural model mainly includes: (1) a link traffic model that tracks the traffic waves cyclically. Traffic waves within each cycle are captured by three characteristic points. These points are formed by the encounter of different traffic waves. (2) a proportional line model which is used to split the overall outflow into different turning flow. The model is derived directly from first-in-first-out (FIFO) principle. (3) a spillover component that deals with channelized section queue overflow and (4) a traffic flow performance index component that outputs macroscopic and microscopic level indexes. These indexes include delay, stops, queue length and vehicle trajectory, travel time. The former three can be used in traffic flow optimization and the latter two are valuable in vehicle emission evaluation. Simulation results show that with the increasing of numerical resolution, traditional CTM model gradually converges to our model.
H.s. Qi, Y. Y, Dian Hai Wang, Y.m. Bie,
Volume 13, Issue 4 (Transaction A: Civil Engineering December 2015)
Abstract

Abstract: Gridlock is an extreme traffic state where vehicle cannot move at all. This research studies the development of gridlock by theoretical and numerical analysis. It is shown that the development of gridlock can be divided into several stages. The core of the development is the evolution of congestion loop. A congestion loop is comprised of a number of consecutively connected spillover links. The evolution of a congestion loop always tends to be stable, i.e. the state of all related links tends to be identical.. Under the stable condition, traffic states of all links are identical. A novel concept, “virtual signal” is proposed to describe the queue propagation and spillover during the stabilization. Simulation results show that congestion propagates in an accelerated way. The prevention of the first congestion loop is crucial. The achieved results have potential use for future network traffic control design and field applications


Jiuping Xu, Qiurui Liu, Zhonghua Yang,
Volume 15, Issue 1 (Transaction A: Civil Engineering 2017)
Abstract

To fully explain hydropower unit operational problems, an optimal multi-objective dynamic scheduling model is presented which seeks to improve the efficiency of reservation regulation management. To reflect the actual hydropower engineering project environment, fuzzy random uncertainty and an integrated consideration of the natural resource constraints, such as load balance, system power balance, generation limits, turbine capacity, water head, discharge capacities, reservoir storage volumes, and water spillages, were included in the model. The aim of this research was to concurrently minimize discharges and maximize economic benefit. Subsequently, a new hybrid dynamic-programming based multi-start multi-objective simulated annealing algorithm was developed to solve the hydro unit operational problem. The proposed model and intelligent algorithm were then applied to the Xiaolongmen Hydraulic and Hydropower Station in China. The computational unit commitment schedule results demonstrated the practicality and efficiency of this optimization method.


Tao Ma, Hao Wang, Yongli Zhao, Xiaoming Huang, Siqi Wang,
Volume 15, Issue 2 (Transaction A: Civil Engineering 2017)
Abstract

This study evaluated the effects of Warm Mix Asphalt (WMA) additives on the compaction temperature and properties of Crumb Rubber Modified (CRM) asphalt binder and mixture. Two different WMA additives (named as Sas and Evm) were used to prepare warm-mix CRM asphalt binder and mixture. The viscosity of different warm-mix CRM asphalt binders and mastics were measured at different temperatures. The rheological and mechanical properties of different warm-mix CRM asphalt binders were tested. At the mixture level, the volumetric properties of different warm-mix CRM asphalt mixtures were experimented by Gyratory compactor at different temperatures and the performance of different warm-mix CRM asphalt mixtures were evaluated. It was found that, both of the two WMA additives could lower the compaction temperatures of CRM asphalt mixtures by 10°C~20°C. However, they have different influences on rheological properties of CRM binder and performance of CRM mixture. The Sas warm-mix additive can improve the anti-rutting performance of CRM mixture but may degrade its low-temperature performance and moisture stability. The Evm warm-mix additive has no adverse effects on the high-temperature and low-temperature performance of CRM asphalt mixtures and can improve its moisture stability.


Zhechao Wang, Ron C. K. Wong, Liping Qiao, Wenge Qiu,
Volume 15, Issue 3 (Transaction B: Geotechnical Engineering 2017)
Abstract

The effects of effective stress and void ratio on the secondary compressibility of the sandy and clayey soils were investigated in this study. The coefficient of secondary compression of Ottawa sand in single stage and stepwise loading tests increases with effective vertical stress while that of saturated kaolinite decreases with effective vertical stress. Multi-staged loading tests showed that at a given effective stress, the higher the void ratios of the soils, the higher the coefficients of secondary compression of the soils are. It was concluded that the secondary compressibility of a soil depends on not only the effective stress, but also the void ratio of the soil. A general relationship between the coefficient of secondary compression, and effective stress and void ratio was proposed for soil. The discrepancy of the dependency of secondary compressibility on effective stress for different soils was well explained using this relationship, moreover, the quasi-overconsolidated state of clayed soil induced by time effect and the effect of surcharge preloading on the secondary compressibility of soft ground were discussed in light of the general relationship.


Yang Wang, Kai Su, Hegao Wu, Zhongdong Qian,
Volume 15, Issue 4 (Transaction A: Civil Engineering 2017)
Abstract

The reinforced concrete bifurcation in hydropower station is consistently under high internal water pressure, and its diameter is usually larger than common duct junctions. In order to diminish or to decrease the heavy plastic zone and stress concentration, structure rounding is commonly used on bifurcation. This will bring some changes to the flow characteristic of bifurcation, and it is an interesting attempt to figure out the influence of structure rounding optimization. The Realizable k-ε model was employed in Computational Fluid Dynamics numerical simulation. The water pressure distribution was compared quantitatively at several certain sections. Furthermore, uneven pressure is analyzed by relative standard deviation. Hydraulic characteristics are discussed as well, including flow pattern, excavation volume and head loss in different working conditions. The results indicate that the pressure of pipe wall is uneven, and the maximum and minimum pressure value has a differential of 0.3% - 1.2% compared to relative static water pressure. The pressure unevenness will increase after structure rounding, and it has a positive correlation with structure rounding radius. At the same time, it is more reasonable for structure rounding in obtuse angle region than that in acute angle region, on account of well-distributed flow conditions and better economic benefit.


Muhammad Yousaf, Zahid Ahmed Siddiqi, Muhammad Burhan Sharif, Asad Ullah Qazi,
Volume 15, Issue 4 (Transaction A: Civil Engineering 2017)
Abstract

In this study, a comparison is made between force and displacement controlled non-linear FE analyses for an RC beam in flexure with partially developed steel bars. An FE model with slightly unsymmetrical reinforcement was analyzed by applying two-point loading using both force and displacement controlled methods. The responses obtained using ANSYS-13 were validated against available experimental data. Combined comparative display of flexural response of the beam using force and displacement controlled analysis, that has least been addressed in the literature, is given here. Study choses large-deformation-nonlinear plastic analysis scheme, discrete modeling approach for material modeling and program-chosen incremental scheme following Newton-Raphson method. The results show that displacement controlled approach is efficient in terms of time saving and less disk space requirement along with the ability to give falling branch of load-deflection response, if element displacement capacity still exists. Moreover, it gives an early estimate of the load carrying capacity of the structural element along with suitable values of convergence and non-linear solution parameters. However, for a beam with unsymmetrical detailing, force controlled analysis method seems to yield more realistic and practical results in terms of mid span deflection and beam cracking behavior compared with assumed symmetric displacement controlled technique. It also gives true fracture prediction at ultimate load level, which is not true for the displacement controlled method as the computer code forces the model to maintain equal displacements at two load points, falsely increasing the capacity of the beam.


Junxin Liu, Chunhe Yang, Jianjun Gan, Yutian Liu, Wei Liu, Qiang Xie,
Volume 15, Issue 6 (Transaction B: Geotechnical Engineering 2017)
Abstract

Abstract: Rainfall is an important triggering factor influencing the stability of soil slope. Study on some influences of the rainfall on the instability characteristics of unsaturated soil embankment slope has been conducted in this paper. Firstly, based on the effective stress theory of unsaturated soil for single variable, fluid-solid coupling constitutive equations were established. Then, a segment of red clay embankment slope, along a railway from Dazhou to Chengdu, damaged by rainfall, was theoretical and numerical-simulating researched by considering both the runoff-underground seepage and the fluid-solid coupling. The failure characteristics of the embankment slope and the numerical simulation results were in excellent agreement. In the end, a sensitivity analysis of the key factors influencing the slope stability subjected to rainfall was performed with emphasis on damage depth as well as infiltration rainfall depth. From the analysis in this paper, it was concluded that the intensity of rainfall, rainfall duration and long-term strength of soil have most effect on slope stability when subjected to rainfall. These results suggest that the numerical simulation can be used for practical applications.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb