A meshless approach, collocation discrete least square (CDLS) method, is extended in this paper, for solving
elasticity problems. In the present CDLS method, the problem domain is discretized by distributed field nodes. The field
nodes are used to construct the trial functions. The moving least-squares interpolant is employed to construct the trial
functions. Some collocation points that are independent of the field nodes are used to form the total residuals of the
problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of the
residuals for the collocation points. The final stiffness matrix is symmetric and therefore can be solved via efficient
solvers. The boundary conditions are easily enforced by the penalty method. The present method does not require any
mesh so it is a truly meshless method. Numerical examples are studied in detail, which show that the present method
is stable and possesses good accuracy, high convergence rate and high efficiency.