Search published articles


Showing 3 results for Sadeghpour

Nader Shariatmadari, Amir Hossein Sadeghpour, Farshid Razaghian,
Volume 12, Issue 3 (Transaction B: Geotechnical Engineering, July 2014)
Abstract

This research shows the results of studies carried out to define and analyze the effect of aging on MSW behavior of Kahrizak Landfill, the biggest landfill in Iran. Studied samples consisted of fresh samples and also aged ones with 5.5, 14 and 21 years of age which were obtained by mechanical excavators in aged burial locations. Analyzing variation in MSW components illustrates that paste fraction of MSW decreases due to aging process while fibers show a rising trend. Also the moisture content and the organic content of MSW reduce below half of the initial values while the degree of decomposition (DOD) increase up to almost 60% after 14 years. These variations over the time are significantly related to the burying methods and environmental condition of burying location. Shear strength behavior of MSW material was analyzed by some CU tests using large scale triaxial apparatus (D=150mm, H=300mm) on remolded MSW specimens. General observations depict that with an increase in strain level, loading rises without any peak point on stress-strain curves. Fresh samples represent the lowest shear strength followed by 21, 14 and 5.5 year-old samples respectively. There is a direct relationship between fiber content and shear strength. Internal friction angle of aged samples decreases in comparison with fresh ones while cohesion has an inverse trend and rises over the time. According to the effect of burying condition on MSW characteristics, it seems that DOD factor is a more appropriate factor than age in order to analyze long-term behavior of MSW.
M. Derakhshandi, H. R. Pourbagherian, M. H. Baziar, N. Shariatmadari, A. H. Sadeghpour,
Volume 12, Issue 4 (Transaction B: Geotechnical Engineering December 2014)
Abstract

In this study, the mechanical behavior of Vanyar dam was evaluated at the end of construction. A two-dimensional numerical analysis was conducted based on a finite element method on the largest cross-section of the dam. The data recorded by the instruments located in the largest cross-section were compared with the results of the numerical analysis at the place of instruments. The settlement, pore water pressure, and total vertical stress were the parameters used for evaluating the dam behavior at the end of construction. The results showed that the settlements obtained from the numerical analysis were in reasonable agreement with the data recorded by the instruments, which proved that the numerical analysis was implemented based on realistic material properties. In addition, the difference between the instruments and the numerical analysis in terms of total vertical stresses was discussed by focusing on the local arching around the pressure cells. Furthermore, the arching ratios were calculated based on the results of the numerical analysis and the data recorded by the instruments. Moreover, the pore water pressures and total vertical stresses, recorded by piezometers and pressure cells, respectively, were the two parameters utilized for evaluating the hydraulic fracturing phenomena in the core. The results demonstrated that the maximum settlement obtained from the numerical analysis was 1 m, which corresponded to 46 m above the bedrock on the core axis. The recorded data in the core axis indicated that maximum settlement of 0.83 m happened 40 m above the bedrock. In addition, maximum pore water pressure ratio recorded by the instruments (Ru =0.43) was more than that obtained from the numerical analysis (Ru =0.26) this difference was due to the local arching around the pressure cells. Furthermore, the arching ratios in Vanyar dam were found to be 0.83 to 0.90. In general, the results revealed that the dam was located on a safe side in terms of critical parameters, including settlement and hydraulic fracturing. In addition, results of the numerical analysis were consistent with those provided by the monitoring system


N. Shariatmadari, A.h. Sadeghpour, M. Mokhtari,
Volume 13, Issue 1 (Transaction A: Civil Engineering March 2015)
Abstract

The physical properties of the municipal solid waste (MSW) in Kahrizak Landfill (Tehran, Iran) and its changes due to aging were investigated in this research. A study of the components of the fresh MSW in this landfill showed that more than 60% of it was made from the wastes of foods, fruits, vegetables and organic materials. Next to that, paper/cardboard and plastics, with contributions of 14% and 11%, comprised the greatest parts of the waste materials. Meanwhile, the results obtained from these studies revealed that the contribution of the organic part has been decreased during the last two decade by about 20% while the plastics and paper/cardboard contribution has been increased by the same amount. In order to investigate the effect of aging on the physical properties of MSW, waste samples of 5.5, 14 and 21 years of age were obtained by excavating the aged waste burial regions of this landfill. A study of the changes in the composition of waste materials through aging also revealed that the portion of paste was decreased from 25% to 40% due to the decomposition process, while the contribution of plastics and fabrics was increased up to 200%. Particle size became finer with the mean size being reduced from 70 mm in the fresh wastes to 20 mm in 21-year-old wastes due to the decomposition process. The moisture content of the fresh waste samples was reported to be more than 150%, which was considerably larger than that of other existing landfills. Along with the increase in the age of the waste samples, the moisture content was decreased by as much as one third of the initial value. Furthermore, since the waste mass became more homogeneous by age, the variation of the moisture content was reduced. The organic content of the 14-year-old waste was found to be 20%, which was less than 0.3 of the initial value. Moreover, the variation of the organic content in the waste samples was directly related to the moisture content of the samples with both parameters being reduced to less than one third of the initial value in the older samples. Investigation of the moisture content and the organic content of the aged samples showed that the burial location had a significant effect on the trend of variations. The average density of the fresh waste was measured to be 3.5 and 7.3 kN/m3 after production and burial, respectively. It was found that the average density of the fresh waste grew to about 12kN/m3 as the age was increased.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb