Search published articles


Showing 4 results for Salehi

A.r. Rahai, M.m. Alinia, S.m.f Salehi,
Volume 7, Issue 1 (March 2009)
Abstract

Concentric bracing is one of the most common lateral load resistant systems in building frames, and are

applied to many structures due to their manufacturing simplicity and economics. An important deficiency in the

bracing members is their irregular hysteretic loops under cyclic loading. In order to overcome this problem, it is

advised to restrain braces against buckling under compression, since buckling restrained frames dissipate a large

amount of energy. One method to restrain braces against buckling is to cover them with concrete. A proper covering

can prevent the core from buckling and provide similar capacities whether in tension or compression which would

produce regular hysteric curves. In this study, the behavior of buckling restrained braces (BRB) has been investigated

by considering different types of surrounding covers. The steel core is encased in concrete with different coverings. The

covering types include steel tubes, PVC pipes, and FRP rolled sheets. Experimental and numerical analyses were

implemented. According to the results, PVC pipes and FRP sheets are suitable alternatives to steel pipes. Furthermore,

the behavior of several types of steel cores was assessed since, applying steel with high ductility promotes the energy

dissipation of the brace. Finally, the effect of the separating layer between the steel core and the concrete on the

performance of bracing was evaluated.


H. Salehi, T. Taghikhany, A. Yeganeh Fallah,
Volume 12, Issue 4 (Transaction A: Civil Engineering December 2014)
Abstract

Critical non-structural equipments, including life-saving equipment in hospitals, circuit breakers, computers, high technology instrumentations, etc., are vulnerable to strong earthquakes, and the failure of these equipments may result in a heavy economic loss. To guarantee function of vulnerable equipment during earthquake peak acceleration and peak base displacement response of system should be limited to allowable levels. Traditional and passive control strategies cannot afford these contradictory targets in same time for broad range of ground motions. In recent years, semi-active control systems have been introduced as an adaptable and reliable alternative to control response under both limitations with low power supply. In this paper, efficacy of smart semi-active controlled floor isolation system which consists of a rolling pendulum system and a semi-active controlled magnetorheological (MR)-damper to control seismic response of equipment has been investigated by using clipped-H_2/LQG and clipped-H_∞ algorithms. The effectiveness of these algorithms was examined for equipment stand on raised floor due to floor motions in seven stories building. The results demonstrate semi-active control effectively decrease response acceleration and velocity of equipment in compare to passive strategy and hold its relative displacement to floor in least value. Furthermore it was shown semi-active control strategy with clipped-H_∞ algorithm in controlling seismic response of equipment compare to clipped-H_2/LQG algorithm and passive strategy (isolation system) have better performance in protecting equipment.
Mohsen Shahrouzi, Gholamreza Nouri, Nazaninsadat Salehi,
Volume 15, Issue 2 (Transaction A: Civil Engineering 2017)
Abstract

Tuned mass dampers are common solutions for passive control of bridge responses against dynamic loads. The present work concerns non-uniform support excitation of earthquakes as the dynamic loading source and studies TMD performance in controlling consequent vertical response of simply supported steel bridges. Charged system search as a recent meta-heuristic is successfully utilized to optimize TMD parameters whereas the dynamic response is evaluated via rigorous step-by-step time-history finite element analysis. As another issue, superiority of multiple TMD’s over single TMD is investigated for the present problem after unifying their parameters via optimization. Treating a bridge model as the case study under a number of real-world recorded earthquakes, the error of uniform support excitation under such a non-uniform case is evaluated. Superior efficiency of the utilized charged system search over popular genetic algorithm is observed for this problem. The results also revealed that how advantageous is the application of optimally designed multiple TMD in controlling dynamic vibration modes of such a distributed mass structure


Parviz Ghoddousi, Amir Masoud Salehi,
Volume 15, Issue 8 (Transaction A: Civil Engineering 2017)
Abstract

The fresh properties of Self Compacting Concrete (SCC) might be more susceptible to quality and quantity changes of ingredients than conventional concrete because of a combination of detailed requirements, more complex mix design, and inherent low yield stress and viscosity. In spit of the low robustness of SCC, there are a few methods available to assess the SCC robustness that the accuracy of these methods has not been fully agreed. The current study provides an index for SCC robustness based on the rheology parameters. Thus, an experimental program was undertaken to evaluate the robustness of eight selected SCCs. For doing this, water content of each SCC was changed slightly and their fresh and hardened properties were measured. The results indicated that the length of rheology parameters curve due to variation of mixing water is able to assess the SCC robustness that is comparable with combined performance based on the workability tests changes. According to this index, the robustness of SCC increases about 10% by using air-entraining admixture (AEA) and decreases considerably by reduction the paste volume (up to about 5 times). Also, the most appropriate single workability test to assess the robustness is sieve segregation test. Moreover, the scattering of compressive strength results show that there is a level of robustness in fresh state that after that the scattering of results in hardened state can be affected.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb