Search published articles


Showing 2 results for Yuan

K. Wang, S.f. Yuan, D.f. Cao, W.z. Zheng,
Volume 13, Issue 2 (Transaction A: Civil Engineering June 2015)
Abstract

This paper describes experimental and numerical investigations on two specimens of frames composed of steel reinforced concrete beam and angle-steel concrete column under horizontal low cyclic loading. Based on the test results, the relationship curves of the horizontal load-displacement and the failure modes are acquired. Meanwhile the hysteretic behaviors, skeleton curves, stiffness degradation, energy dissipation, residential deformation of the two specimens are studied. Nonlinear structural analysis program OpenSEES is employed to predict the experimental curves. Using the verified numerical model, the influences of slenderness ratio, axial compression ratio, steel ratio of column, cross-section moment resistance of I-shaped steel in beam, ratio of longitudinal rebars of beam and prestressing level on skeleton curves are investigated. The results indicated that the two specimens exhibited the favorable ductility and energy dissipation capacity, and the beam depth could be reduced to improve service function because of the application of the prestress. The ultimate horizontal load decreases with the increase of column slenderness ratio, and firstly increases then decreases with the increase of axial compression ratio. In the meantime, the descent segment of skeleton curve is smooth with the increase of column slenderness ratio, and becomes steeper with the increase of axial compression ratio.
Changjie Xu, Yuanlei Xu, Honglei Sun,
Volume 13, Issue 2 (Transaction B: Geotechnical Engineering June 2015)
Abstract

In soft soil areas, equal-length piles are often adopted in the retaining system. A decrease in the bending moment value borne by the retaining structure along the pile depth (below the excavation bottom), leads to an inadequate use of the pile bending capacity near the pile bottom. This paper presents retaining systems with long and short pile combinations, in which the long piles ensure integral stability of the excavation while the short piles give full play to bearing the bending moment. For further analysis on pile and bottom heaves deformations and inner-force characteristics, three-dimensional models were built in order to simulate the stage construction of the excavation. The ratio between long and short pile numbers, and the effects on short pile length pile horizontal deformation, pile bending moment and bottom heave are investigated in detail. In the end, a feasible long-short pile combination is established. Obtained results from the simulation data and the field data prove that the long-short pile retaining system is feasible.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb