Search published articles


Showing 2 results for khodaii

Saeed Ghaffarpour Jahromi, Ali Khodaii,
Volume 6, Issue 4 (December 2008)
Abstract

In this study an empirical model which can be used to predict the rutting parameter (G*/sinδ) for neat and powder rubber modified bitumen describes. The model was developed using 36 unique powder rubber modified bitumen combinations, rubber concentrations were varied at 5% intervals between 5 and 20%. The effects of powder rubber particle size on model accuracy were also studied ultimately a model was produced with the capability of predicting rutting parameter values over a range of temperatures and rubber concentrations. By definition, the upper limit of the performance grade is dependent on the rutting parameter value therefore, the relationship was also considered in terms of high end failure temperature. The Rubber Coefficient for rutting parameter (Rcg) was identified as an important parameter in the estimation of rutting parameter (G*/sinδ) with the addition of powder rubber. This term is a quantitative representation of the increase typically witnessed in rutting parameter values with the addition of powder rubber. Ambient ground powder rubber exhibited higher Rcg values than cryogenically ground particles. Additionally, 95% confidence intervals were generated for the predictive model thus providing a range of accuracy for the model. The resulting confidence intervals were approximately +/-1300 Pa these confidence intervals were seen to capture 92.6% of the 462 data points used. Findings from this research suggest that the differences between cryogenic and ambient powder rubber bitumen are accurately described using the Rcg, furthermore bitumen properties may be predicted using an empirical equation.
A. Khodaii, Sh. Fallah,
Volume 7, Issue 2 (June 2009)
Abstract

An experimental program was conducted to determine the effects of geosynthetic reinforcement on mitigating reflection cracking in asphalt overlays. The objectives of this study were to asses the effects of geosynthetics inclusion and its placement location on the accumulation of permanent deformation. To simulate an asphalt pavement overlaid on top of a crack in a concrete or asphalt pavement, an asphalt mixture specimen was placed on top of two discontinuous concrete or asphalt concrete blocks with 100 mm height. Four types of specimens were prepared with respect to the location of geogrid: (I) Unreinforced samples, which served as control specimen, (II) Samples with geogrid embedded on the concrete or asphalt concrete block, (III) Samples with geogrid embeded one-thired depth of asphalt concrete from bottom, (IV) Samples with geogrid embedded in the middle of the asphalt beam. Each specimen was then placed on the rubber foundation in order to be tested. Simulated- repeated loading was applied to the asphalt mixture specimens using a hydraulic dynamic loading frame. Each experiment was recorded in its entirety by a video camera to allow the physical observation of reflection crack formation and propagation. This study revealed that geosynthetic reinforced specimens exhibited resistance to reflection cracking. Placing the geogrid at the one- third depth of overlay thickness had the maximum predicted service life. Results indicate a significant reduction in the rate of crack propagation and rutting in reinforced samples compared to unreinforced samples.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb