Search published articles



Mr. Nilesh Mate, Dr. Sachin Bakre, Dr. Omprakash Jaiswal,
Volume 15, Issue 7 (10-2017)
Abstract

The present paper addresses the comparative study of two adjacent single-degree-of freedom structures for elastic and inelastic systems with and without pounding and also in the presence and absence of TMD under seismic excitations. The tuned mass damper considered for the present study is a passive device attached to single main structural unit in the form of weak storey at the top of main system. Total eight models have been considered depending upon the presence and absence of pounding as well as TMD in the analysis. The entire numerical simulation is carried out in time domain by considering the inputs of four real earthquake ground motions. An elastic adjacent structural system always overrates the pounding forces than the inelastic adjacent structural units. The use of TMD reduces the pounding forces in the adjacent structures. In pounding, structural displacement response is much sensitive for inelastic systems mostly under consideration or ignorance of TMD. Structural energy formation in the adjacent structures shows much variation with and without consideration of pounding as well as TMD.


Dr. Ali Massumi, Dr. Kabir Sadeghi, Mr. Morteza Nekuei,
Volume 15, Issue 7 (10-2017)
Abstract

One of the main concerns in an essential or highly important building is finding the appropriate structural system, while the efficiency of each conventional structural system varies in different cases. In this paper a new multi objective structural configuration is proposed and its efficiency for protecting buildings against the multi-hazards including earthquake, explosion and typhoon is shown in a case study of a 10 stories building sample. To create the optimum and efficient configuration of the structural elements, and to make some large spans, a configuration including Vierendeel girders is used. In this type of configuration, the inner suspended floor parts protect the outer elements by balancing perimeter span loads. This system makes a new condition for the building to be protected against the progressive collapse due to the terrorism attacks. Furthermore, the partially suspended floors in special stories act like tuned mass dampers (TMDs), which are suitable to decrease the amplitude of the displacement response of the structure during an earthquake.



Page 4 from 4     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb