Showing 60 results for Soil
I. Hosseinzadeh Attar, K. Fakharian,
Volume 11, Issue 2 (11-2013)
Abstract
Pile foundations are frequently used in industrial projects in southwest lowlands of Iran. Although high setup of shaft resistance
is usually reported in the area, no reliable formulation or guidelines are available for considering the increased capacity in design
applications. Therefore, the pile design practices are usually not optimized. The main objective of this paper is presenting a site
specific formulation for setup effects of a utility plant in southwest Iran in which a good database of prestressed concrete driven
piles is available. Fajr-II Petrochemical site in PetZone of Mahshahr accommodating a utility plant is selected as the database of
the current study. The setup factor (A) and the reference time (t0) are evaluated through processing of a relatively large database
of this well-supervised piling project. As the main portion of variations of driven piles capacity with time is related to shaft, only
shaft resistance variations are considered in this research. The shaft capacity variations are derived from signal matching analysis
on PDA tests. Reliability of PDA tests has been confirmed through comparing with the static load test results. Influence of driving
the surrounding piles on setup factor is also investigated. The results show that the average setup factor (A) and the reference time
(t0) of 0.30 and 0.01 day, respectively, are proper values for estimating the long term capacity in this region. Evaluation of the
results indicates that driving 8 piles around the test pile has increased the “A” factor average of 40% resultingin increase of the
shaft capacity about 19% in one month and 22% in one year, in comparison with the tested piles with no surrounding piles driven.
H. Shakib, Gh. R. Atefatdoost,
Volume 12, Issue 1 (3-2014)
Abstract
An approach was formulated for the nonlinear analysis of three-dimensional dynamic soil-structure interaction (SSI) of
asymmetric buildings in time domain in order to evaluate the seismic response behavior of torsionally coupled wall-type
buildings. The asymmetric building was idealized as a single-storey three-dimensional system resting on different soil
conditions. The soil beneath the superstructure was modeled as nonlinear solid element. As the stiffness of the reinforced
concrete flexural wall is a strength dependent parameter, a method for strength distribution among the lateral force resisting
elements was considered. The response of soil-structure interaction of the system under the lateral component of El Centro
1940 earthquake record was evaluated and the effect of base flexibility on the response behavior of the system was verified.
The results indicated that the base flexibility decreased the torsional response of asymmetric building so that this effect for soft
soil was maximum. On the other hand, the torsional effects can be minimized by using a strength distribution, when the centre of
both strength CV and rigidity CR is located on the opposite side of the centre of mass CM, and SSI has no effect on this
criterion.
P. Vahabkashi, A. R. Rahai, A. Amirshahkarami,
Volume 12, Issue 1 (3-2014)
Abstract
Piles or drilled shafts used in bridge foundation, waterfronts, and high rise buildings are generally subjected to lateral loads. In order to study the effect of concrete pile geometry on the structural behavior in layered soils, several models with different shapes and dimensions for piles and different properties for two soil layers with variable thickness were selected and analyzed using the finite difference method.
The performance of piles situated in layered granular soil with different compaction and thicknesses were studied in two cycles of lateral loading and unloading. The applied finite difference procedure is also validated based on experimental and published results.
The pile head displacement of different models due to their overall deformation and rotation were calculated under maximum loading. For a comparison of pile head displacement due to their overall deformation and rotation in different models, the "performance index” is defined as the ratio of “displacement due to deformation” to the “total displacement”.
J. Nazari Afshar, M. Ghazavi,
Volume 12, Issue 1 (1-2014)
Abstract
The Stone-column is a useful method for increasing the bearing capacity and reducing settlement of foundation soil. The prediction of accurate ultimate bearing capacity of stone columns is very important in soil improvement techniques. Bulging failure mechanism usually controls the failure mechanism. In this paper, an imaginary retaining wall is used such that it stretches vertically from the stone column edge. A simple analytical method is introduced for estimation of the ultimate bearing capacity of the stone column using Coulomb lateral earth pressure theory. Presented method needs conventional Mohr-coloumb shear strength parameters of the stone column material and the native soil for estimation the ultimate bearing capacity of stone column. The validity of the developed method has been verified using finite element method and test data. Parametric studies have been carried out and effects of contributing parameters such as stone column diameter, column spacing, and the internal friction angle of the stone column material on the ultimate bearing capacity have been investigated.
C. Vieira,
Volume 12, Issue 1 (1-2014)
Abstract
This paper presents a simplified approach to estimate the resultant force, which should be provided by a retention system,
for the equilibrium of unstable slopes. The results were obtained with a developed algorithm, based on limit equilibrium
analyses, that assumes a two-part wedge failure mechanism. Design charts to obtain equivalent earth pressure coefficients are
presented. Based on the results achieved with the developed computer code, an approximate equation to estimate the
equivalent earth pressure coefficients is proposed. Given the slope angle, the backslope, the design friction angle, the height of
the slope and the unit weight of the backfill, one can determine the resultant force for slope equilibrium. This simplified
approach intends to provide an extension of the Coulomb earth pressure theory to the stability analyses of steep slopes and to
broaden the available design charts for steep reinforced slopes with non-horizontal backslopes
H. Shahnazari, M. A. Shahin, M. A. Tutunchian,
Volume 12, Issue 1 (1-2014)
Abstract
Due to the heterogeneous nature of granular soils and the involvement of many effective parameters in the geotechnical
behavior of soil-foundation systems, the accurate prediction of shallow foundation settlements on cohesionless soils is a
complex engineering problem. In this study, three new evolutionary-based techniques, including evolutionary polynomial
regression (EPR), classical genetic programming (GP), and gene expression programming (GEP), are utilized to obtain more
accurate predictive settlement models. The models are developed using a large databank of standard penetration test (SPT)-based case histories. The values obtained from the new models are compared with those of the most precise models that have
been previously proposed by researchers. The results show that the new EPR and GP-based models are able to predict the
foundation settlement on cohesionless soils under the described conditions with R2
values higher than 87%. The artificial
neural networks (ANNs) and genetic programming (GP)-based models obtained from the literature, have R2
values of about
85% and 83%, respectively which are higher than 80% for the GEP-based model. A subsequent comprehensive parametric
study is further carried out to evaluate the sensitivity of the foundation settlement to the effective input parameters. The
comparison results prove that the new EPR and GP-based models are the most accurate models. In this study, the feasibility of
the EPR, GP and GEP approaches in finding solutions for highly nonlinear problems such as settlement of shallow
foundations on granular soils is also clearly illustrated. The developed models are quite simple and straightforward and can
be used reliably for routine design practice.
Amir Hossein Jafarieh, Mohammad Ali Ghannad,
Volume 12, Issue 2 (6-2014)
Abstract
It is well-known that the behavior of soil-structure systems can be well described using a limited number of non-dimensional parameters. This is the outcome of researches based on the premise that the foundation is bonded to the ground. Here, it is shown the concept can be extended to systems with foundation uplift. A set of non-dimensional parameters are introduced which controls the main features of uplifting systems. The effect of foundation uplift on response of soil-structure systems are investigated parametrically through time history analysis for a wide range of systems subjected to ground motions recorded on different soil types. In particular, the effects of uplift on displacement ratio, defined as the ratio of maximum displacement of the uplifting system to that of the elastic system without uplifting and drift ratio, defined as the ratio of maximum drift of the structure as a part of uplifting soil-structure system to that of the elastic system without uplifting, are investigated. It is observed that in general foundation uplift reduces the drift response of structures, which in turn, results in lower base shear. The reduction reaches about 35 percent for slender structures located on relatively soft soils subjected to strong ground motions. Simplified expressions are suggested to estimate this reduction in the base shear.
C. Gümüşer, A. Şenol,
Volume 12, Issue 2 (4-2014)
Abstract
The total coal and lignite consumption of the thermic power plants in Turkey is approximately 55 million tons and nearly
15 million tons of fly ash is produced. The remarkable increase in the production of fly ash and its disposal in an
environmentally friendly manner is increasingly becoming a matter of global concern. Studies for the utilization of fly ash in
Turkey are necessary to reduce environmental problems and avoid economical loss caused by the disposal of fly ash. Efforts
are underway to improve the use of fly ash in several ways, with the geotechnical utilization also forming an important aspect
of these efforts. An experimental program was undertaken to investigate the effects of Multifilament (MF19average) and
Fibrillated (F19average) polypropylene fiber on the compaction and strength behavior of CH class soil with fly ash in
different proportions. The soil samples were prepared at three different percentages of fiber content (i.e. 0.5%, 1% and 1.5%
by weight of soil) and two different percentages of fly ash (i.e. 10% and 15% by weight of soil). A series of tests were prepared
in optimum moisture content and laboratory unconfined compression strength tests, compaction tests and Atterberg limits test
were carried out. The fiber inclusions increased the strength of the fly ash specimens and changed their brittle behavior into
ductile behavior.
Ali Kavand, S.mohsen Haeri, Arian Asefzadeh, Iraj Rahmani, Abbas Ghalandarzadeh, Ali Bakhshi,
Volume 12, Issue 3 (7-2014)
Abstract
In this paper, different aspects of the behavior of 2×2 pile groups under liquefaction-induced lateral spreading in a
3-layer soil profile is investigated using large scale 1-g shake table test. Different parameters of the response of soil and piles including time-histories of accelerations, pore water pressures, displacements and bending moments are presented and discussed in the paper. In addition, distribution of lateral forces due to lateral spreading on individual piles of the groups is investigated in detail. The results show that total lateral forces on the piles are influenced by the shadow effect as well as the superstructure mass attached to the pile cap. It was also found that lateral forces exerted on the piles in the lower half of the liquefied layer are significantly larger than those recommended by the design code. Based on the numerical analyses performed, it is shown that the displacement based method is more capable of predicting the pile group behavior in this experiment comparing to the force based method provided that the model parameters are tuned.
M. Kobayashi, U. H. Issa, A. Ahmed,
Volume 13, Issue 1 (3-2015)
Abstract
The use of recycled bassanite, produced from gypsum wastes, in ground improvement projects is initiated recently in Japan to eliminate the huge quantities of gypsum wastes. Meanwhile the use of recycled bassanite has a positive effect on the environment and economy, it has many challenges. These challenges are related to the release of fluorine more than the standard limits results in contaminated fluorine soil. This research investigates the effect of the amount of bassanite, and water content on the release of fluorine from MC-clay soil stabilized with bassanite, taking in consideration their effect on the compressive strength. Recycled bassanite was mixed with furnace cement with a ratio of 1:1 to prevent the solubility of bassanite. Different amounts of this admixture were mixed with the tested soil at different water contents. Unconfined compression test was used to determine the compressive strength while the solubility of fluorine was used to represent the geo-environmental properties in term of the release of fluorine. Scan electron microscopic (SEM) test was done to identify the development of cementation compounds in the matrix of treated-bassanite soil. Test results showed that, the addition of bassanite had a significant effect on the improvement of compressive strength by increasing the amount of bassanite. Curing time had a significant effect on the increase of compressive strength, the strength increases with the increase of curing time, especially in the later curing time. The release of fluorine increases with increasing the amount of bassanite in soil mixture. The increase of water content had an indirect effect on the release of fluorine while it had a negative effect on the improvement of strength and consuming the amount of admixture. The increase of strength is associated with the decrease of the release of fluorine. Recycled bassanite, produced from gypsum wastes, had a potential to be used as a stabilizer material for MC-clay soil and meet the standards of environment.
M. Anwer Khan,
Volume 13, Issue 1 (3-2015)
Abstract
Investigation of projectiles penetration phenomenon has been carried out in non-cohesive soil (Sand) targets under dry, saturated and compacted conditions. Analytical studies have been performed on the linear and non-linear soil models to obtain penetration depth formulae for ogival nose projectile and the results are verified by experimental studies. In present work, three ogival nose projectiles each having weight of 1.0 kg and nose angle of 15o, 30o and 45o are dropped from a height of 10.0 m in rectangular tank filled up by non-cohesive soil target. The rigid projectiles made an impact on a uniform target material at normal incidence with striking velocity of 14 m/s and proceeded to penetrate at rigid-body velocity. The models require geometrical parameters of the projectile types, velocity and target shear strength for the overall penetration depth of projectile. In addition, some parametric studies have been also carried out for academic and field interest.
Changjie Xu, Yuanlei Xu, Honglei Sun,
Volume 13, Issue 2 (6-2015)
Abstract
In soft soil areas, equal-length piles are often adopted in the retaining system. A decrease in the bending moment value borne by the retaining structure along the pile depth (below the excavation bottom), leads to an inadequate use of the pile bending capacity near the pile bottom. This paper presents retaining systems with long and short pile combinations, in which the long piles ensure integral stability of the excavation while the short piles give full play to bearing the bending moment. For further analysis on pile and bottom heaves deformations and inner-force characteristics, three-dimensional models were built in order to simulate the stage construction of the excavation. The ratio between long and short pile numbers, and the effects on short pile length pile horizontal deformation, pile bending moment and bottom heave are investigated in detail. In the end, a feasible long-short pile combination is established. Obtained results from the simulation data and the field data prove that the long-short pile retaining system is feasible.
Dr. Gh. Tavakoli Mehrjardi, Prof. S.n. Moghaddas Tafreshi, Dr. A.r. Dawson,
Volume 13, Issue 2 (6-2015)
Abstract
A numerical simulation of laboratory model tests was carried out to develop an understanding of the behaviour of pipes in a trench prepared with 3-Dimensional reinforced (namely "geocell-reinforced" in the present study) sand and rubber-soil mixtures, under repeated loadings. The study reports overall performance of buried pipes in different conditions of pipe-trench installations and the influence of pipe stiffness on backfill settlements, stress distribution in the trench depth and stress distribution along the pipe's longitudinal axis. Good agreements between the numerical results and experimental results were observed. The results demonstrate that combined use of the geocell layer and rubber-soil mixture can reduce soil surface settlement and pipe deflection and eventually provide a secure condition for buried pipe even under strong repeated loads.
A. Komak Panah, A.h. Khoshay,
Volume 13, Issue 2 (6-2015)
Abstract
To increase the safety of structures against strong ground motions and their life due to environmental issues on the earth and saving in terms of materials, it is necessary to expand and upgrade seismic resistant systems. However, more cost-effective systems which have sufficient influence on the seismic performance of structures and also more compatibility with the regional conditions, will be more desirable than other systems. One of the seismic resistance systems is seismic isolation. In the event of interest in using the seismic isolation system for a mounted building on piles, the costly construction of piles and isolation equipment shall be provided simultaneously. The seismic isolating using sleeved-piles which is generally used in combination with various damper systems, can help to overcome this issue. In this research a seismic isolator system using sleeved-pile has been studied while considering the damping behavior of the soil-rubber mixture as the only source of damping. To investigate the proposed system, a series of tests including static lateral load test, dynamic free and forced vibration tests, were performed on a model pile in a field laboratory which has been constructed for this purpose. According to results of tests the proposed system has a good deformation ability and damping characteristics, and as a method of seismic isolation is completely efficient.
Dr M. Khodaparast, Dr A.m. Rajabi, Mr. M. Mohammadi,
Volume 13, Issue 2 (6-2015)
Abstract
The Dynamic Probe is an effective tool used in site investigation. It is more economic than the use of direct drilling, particularly in explorations with moderate depth. This paper presents an experimental study to investigate the capability of using dynamic probing to evaluate the shear strength and compaction percent of fine soil. A series of dynamic probe tests were carried out at 6 different sites in the Khozestan, Hormozgan and Qom provinces in the central and southern regions of Iran. The repeatability of the results is considered and new empirical equations relating the dynamic point resistance to undrained shear strength and compaction percent are proposed. For undrained shear strength evaluation of fine soils, i.e. clay and silty clay soils, a reliable site-specific correlation between qd and Cu can be developed when considering the correlation between log qd and log Cu. Also compaction present can be evaluated by qd. These equations can be developed to provide site-specific relationships based upon geotechnical data at each new location. Using this approach an estimation of the undrained shear strength Cu and compaction percent CP can be determined from dynamic probe tests with acceptable accuracy. The present paper also encourages the wider application of dynamic probing for site investigation in fine soils.
X. Liu, K. Sheng, J.h. Hua, B.n. Hong, J.j. Zhu,
Volume 13, Issue 3 (12-2015)
Abstract
In order to improve the utilization of high liquid limit soil, the fundamental properties of high liquid limit soil and its direct utilization method are studied in this paper. This work involves both laboratory and fieldwork experiments. The results show that clay and sandy clay both with high liquid limit can be directly used for the road embankment, and the degree of compaction can be controlled at 88 %. The pack-and-cover method in accordance with Chinese technical specifications is recommended to be operated in the engineering practice. The packed height should be less than 8 meters and the total height of embankment no more than 12 meters in the interests of settlement. From the view of stability, the optimal thickness value of top sealing soil layer and edge sealing soil layer is about 1.5 meter respectively, and the geogrid reinforcement spacing should be about 2.0 meters. In addition, based on Yun-Luo expressway in China filled with high liquid limit soil, the construction techniques and key points of quality control in subgrade with pack-and-cover method are compared and discussed in detail, and the feasibility of these schemes are verified by the experimental results.
M.a. Rahgozar,
Volume 13, Issue 3 (12-2015)
Abstract
The interactive effects of adjacent buildings on their seismic performance are not frequently considered in seismic design. The adjacent buildings, however, are interrelated through the soil during seismic ground motions. The seismic energy is redistributed in the neighboring buildings through multiple structure-soil-structure interactions (SSSI). For example, in an area congested with many nearby tall and/or heavy buildings, accounting for the proximity effects of the adjacent buildings is very important. To solve the problem of SSSI successfully, researchers indicate two main research areas where need the most attention: 1) accounting for soil nonlinearity in an efficient way, and 2) spatial analysis of full 3D soil-structure models. In the present study, three-dimensional finite element models of tall buildings on different flexible foundation soils are used to evaluate the extent of cross interaction of adjacent buildings. Soil nonlinearity under cyclic loading is accounted for by Equivalent Linear Method (ELM) as to conduct large parametric studies in the field of seismic soil-structure interaction, the application of ELM is preferred over other alternatives (such as application of complicated constitutive soil models) due to the efficiency and reliability of its results. 15 and 30 story steel structures with pile foundations on two sandy and clayey sites are designed according to modern codes and then subjected to several actual earthquake records scaled to represent the seismicity of the building sites. Results show the cross interaction of adjacent buildings on flexible soils, depending on their proximity, increases dynamic displacements of buildings and reduces their base shears.
M. Davoodi, M. Sadjadi,
Volume 13, Issue 3 (12-2015)
Abstract
The distinctive characteristics of near-field earthquake records can lead to different structural responses from those experienced in far-field ones. Furthermore, soil-structure interaction (SSI) can have a crucial influence on the seismic response of structures founded on soft soils however, in most of the time has been neglected nonchalantly. This paper addresses the effects of near-field versus far-field earthquakes on the seismic response of single degree of freedom (SDOF) system with considering SSI. A total 71 records were selected in which near-field ground motions have been classified into two categories: first, records with a strong velocity pulse, (i.e. forward-directivity) second, records with a residual ground displacement (i.e. fling-step). Findings from the study reveal that pulse-type near-field records generally produce greater seismic responses than far-field motions especially at high structure-to-soil stiffness ratios. Moreover, the importance of considering SSI effects in design of structures is investigated through an example. Finally, parametric study between Peak Ground Velocity to Peak Ground Acceleration ratio (PGV/PGA) of pulse-like ground motions and maximum relative displacement indicate that with increase in structure-to-soil stiffness ratios, earthquakes with higher PGV/PGA ratio produce greater responses.
B.a. Mir,
Volume 13, Issue 3 (12-2015)
Abstract
Fly ash is one of the most plentiful and versatile of the industrial by-products. At present, nearly 150 million tonnes of fly ash is being generated annually in India posing dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use the same effectively and efficiently. However, it is only in geotechnical engineering applications such as the construction of embankments/dykes, as back fill material, as a sub-base material etc., its large-scale utilization is possible either alone or with soil. Soil stabilization can be achieved by various means such as compaction, soil replacement, chemical improvement, earth reinforcement etc. Usually, in the case of clay soils, chemical improvement is commonly most effective since it can strengthen the soil, to remove its sensitivity both to water and its subsequent stress history. Among chemical means or additives, fly ash/lime provides an economic and powerful means of improvement, as demonstrated by the significant transformation that is evident on mixing with heavy clay. In the present investigation, different percent fly ashes (10%, 20%, 40%, 60% & 80%) were added to a highly expansive soil from India by dry weight of the natural soil, and subjected to various tests. The important properties that are necessary for using fly ash in many geotechnical applications are index properties, compaction characteristics, compressibility characteristics, permeability and strength. Based on test results, it has been found that using fly ash for improvement of soils has a two-fold advantage. First, to avoid the tremendous environmental problems caused by large scale dumping of fly ash and second, to reduce the cost of stabilization of problematic/marginal soils and improving their engineering properties for safe construction of Engineering Structures.
S.a.o. Hosseini, M. Nasiri, M. Akbarimehr,
Volume 13, Issue 3 (9-2015)
Abstract
Harvesting of timber using ground based machinery is still a common practice around the world. Track and road building,
and movement of machinery during harvesting operations cause soil disturbance. Therefore the aim of this study was to
investigate the change in soil properties after logging operation on skid trails (2 years and 7 years after logging) and compare
disturbed soil properties with control sampling (undisturbed soil). For this purpose, soil samples were collected from the skid
trail and undisturbed area. Electrical conductivity, pH, organic carbon, moisture equivalent, moisture, total porosity and bulk
density were determined on the skid trail and undisturbed area. Soil characteristics were examined in two ages (2 years and 7
years skid trail). There were crucial differences in the values of electrical conductivity, organic carbon, moisture, total
porosity and bulk density from skid trail and undisturbed area in 2 years skid trail (p<0.05). But on 7 years skid trail, there
were no significant differences in values of mentioned factors from skid trail and undisturbed area (p>0.05) except bulk
density (p=0). It has been concluded that 7 years after logging, all soil properties except bulk density were completely
recovered on skid trail. These findings have important implications for assessing the impact of skidders traffic and recovery
time in skid trails.