Showing 74 results for He
M. Heidarzadeh, A. A. Mirghasemi, H. Niroomand,
Volume 13, Issue 1 (Transaction B: Geotechnical Engineering March 2015)
Abstract
We report engineering experiences from the critical task of relief well installation under high artesian flow conditions at the downstream toe of the Karkheh earth dam, Iran. Due to the establishment of excessive uplift pressure at the downstream toe of the Karkheh dam, installation of a series of new relief wells was considered to permanently relieve part of these pressures. The mentioned uplift pressure, as high as around 30 m above the ground level, was produced in a confined conglomerate aquifer bounded above and below by relatively impervious mudstone layers which reduced the safety factor of the dam toe to below 1.0. Investigations on the shortcomings of the old relief wells installed at the dam site showed that the main problems were: insufficient well numbers, insufficient well diameters, irregular well screens causing their blockage by time passing, and insufficient total opening area. Despite engineering difficulties and associated risk of downstream toe instability, installation of new relief wells was successfully completed under high artesian flow conditions” was successfully completed. The employed technique for the construction of the new relief wells under flowing artesian conditions was based on: 1) cement grouting and casing of the well, 2) telescopic drilling, 3) application of appropriate drilling fluid, and 4) controlling the artesian flow by adding a long vertical pipe to the top of the relief wells. Numerical modeling of seepage for the Karkheh dam foundation showed that, as a result of the installation of the new relief wells, the safety factor of the downstream toe increased to the safe value of 1.3 for the normal reservoir water level.
Z. Sabzi, A. Fakher,
Volume 13, Issue 1 (Transaction B: Geotechnical Engineering March 2015)
Abstract
Limitations in the design method used for the support systems of urban buildings make them vulnerable to damage by adjacent excavations. This paper examines a traditional system used to support excavation sites and adjacent buildings in which inclined struts are connected to the wall or foundation of the adjacent building. This method can be considered to be a type of shoring or underpinning. The performance of buildings and the criteria for deformation control during excavation are introduced. Next, a 2D finite element analysis is presented in which an excavation is modeled considering the parameters from the adjacent building and the inclined struts. The numerical model is capable of simulating the overall excavation and installation of the support system. The soil is modeled using an elastic perfectly-plastic constitutive relation based on the Mohr-Coulomb criterion. The finite element model is validated using Rankine earth pressure and in situ data was measured during an excavation. The effect of different variables on performance and acceptable limits for the inclined strut are discussed. The model used for the parametric study shows the influence of the characteristics of the adjacent building, soil parameters, geometry of excavation, type of excavation and effect of strut installation. It was found that one type of strut arrangement produced the best possible result. The results can be used as a primary approximation of small-to-medium depth excavations in which struts are used to reduce the deflections.
A.a. Heshmati, A.r. Tabibnejad, H. Salehzadeh, S. Hashemi Tabatabaei,
Volume 13, Issue 1 (Transaction B: Geotechnical Engineering March 2015)
Abstract
To investigate the saturation induced collapse deformation behavior of rockfill material, a set of large-scale triaxial tests were conducted in saturated and dry-saturated conditions. Specimens were tested under various confining pressures. For dry-saturated tests, specimens were sheared in various stress levels. Results of all dry saturated tests indicate a sudden reduction in the specimen volume during the submerging process. The ratio of the minimum axial strength of a submerged specimen (at the end of the saturation process) to the shear strength of the specimen before saturation is defined as the coefficient of stress recovery, Csr. Results show that this ratio increases as the confining pressure increases, and decreases as the shear stress level increases. According to the results of dry-saturated tests, reduction values of the internal friction angle caused by saturation (c), the ratio of the elasticity modulus of the material after saturation to its elasticity modulus in dry condition, i.e., Ewet/Edry, and the saturation induced sudden volumetric strain (vc) decrease as the confining pressures increase. However the shear stress level does not have any meaningful effect on the variation of c, Ewet/Edry and (vc).
M. Hajiazizi, Eng. A. R. Mazaheri,
Volume 13, Issue 1 (Transaction B: Geotechnical Engineering March 2015)
Abstract
Stabilization of earth slopes with various proposed methods is one of the important concerns of geotechnical engineering. In this practice, despite numerous developments, design conservativeness and high costs of stabilization are the issues yet to be addressed. This paper not only deals with pile location optimization but also studies the effects of the pile length by using line segments slip surface (non-circular). Taking into account the line segments slip surface in stabilization of earth slopes is a new topic which has been addressed in this paper. The line segments slip surface is actual slip surface and for determining the pile location it can lead to the actual length of the pile.
The line segments critical slip surface is obtained by using the Alternating Variable Local Gradient (AVLG) optimization method. AVLG is an approach in optimization process and it is based on the Univariate method. The line segments form the initial and critical slip surface. Pile improper installation and inadequate length not only fails to increase the factor of safety, but also reduces it. The analyses are performed using the limit equilibrium (LE) method. Results of these analyses are acceptable and are properly consistent with the results obtained by other researchers.
M. Fazlavi, E. Haghshenas,
Volume 13, Issue 1 (Transaction B: Geotechnical Engineering March 2015)
Abstract
In this paper we are going to show the importance of mode identification in microtremor array analysis. The idea come from four concentric ambient noise array recordings with aperture 100 to 1000 meters, performed in southern urban area of Tehran near the shrine of Imam Khomeini. These measurements were part of a comprehensive research project with the aim of determination of deep shear wave velocity model of Tehran alluvial deposits. Using appropriate signal processing techniques, including array processing methods as well as classical and time-frequency horizontal/vertical spectral ratio, the dispersion curves of surface waves, fundamental resonance frequency and Ellipticity of Rayleigh waves, were extracted. In the final step, the shear wave velocity profile of the site was determined by joint inversion of all of these attributes. The results show 2 different energetic trends in dispersion curves, for arrays of aperture 200 and 400 meters that one of them is coincide with 100m aperture array. For array with aperture 1000m any clear trend of energy could be observed because of deficiency of energy in low frequency. The inversion of data obtained by 100m aperture array alone, assuming the dispersion curve as fundamental mode (a common procedure in urban area) result in shear wave velocity that is not match with existing geological information. Performing the inversion, assuming 2 energetic trends, observed for larger arrays one as fundamental mode and another as mode 1 of Rayleigh waves, can modify significantly the shear wave velocity profile in accordance with existing geological and geotechnical information. This study show the importance of extracting of correct dispersion curves with detecting fundamental and higher modes, using array measurement with various aperture at one place to obtain more realistic shear wave velocity profile.
K. Wang, S.f. Yuan, D.f. Cao, W.z. Zheng,
Volume 13, Issue 2 (Transaction A: Civil Engineering June 2015)
Abstract
This paper describes experimental and numerical investigations on two specimens of frames composed of steel reinforced concrete beam and angle-steel concrete column under horizontal low cyclic loading. Based on the test results, the relationship curves of the horizontal load-displacement and the failure modes are acquired. Meanwhile the hysteretic behaviors, skeleton curves, stiffness degradation, energy dissipation, residential deformation of the two specimens are studied. Nonlinear structural analysis program OpenSEES is employed to predict the experimental curves. Using the verified numerical model, the influences of slenderness ratio, axial compression ratio, steel ratio of column, cross-section moment resistance of I-shaped steel in beam, ratio of longitudinal rebars of beam and prestressing level on skeleton curves are investigated. The results indicated that the two specimens exhibited the favorable ductility and energy dissipation capacity, and the beam depth could be reduced to improve service function because of the application of the prestress. The ultimate horizontal load decreases with the increase of column slenderness ratio, and firstly increases then decreases with the increase of axial compression ratio. In the meantime, the descent segment of skeleton curve is smooth with the increase of column slenderness ratio, and becomes steeper with the increase of axial compression ratio.
H. Liu, M. He, J. Guo, Zh. Hou, Y. Shi,
Volume 13, Issue 2 (Transaction A: Civil Engineering June 2015)
Abstract
Self-centering pier (SCP) has been viewed as a remarkable accomplishment which is able to sustain major lateral loading with reduced structure damage in seismic engineering. Stiffness deterioration observed in experiment is vital for the seismic performance of self-centering concrete pier. In this contribution, the associated stiffness deterioration with respect to the structural damage is modeled in a modified analytical model for SCP comprehensively. In the proposed modified theoretical model, the lateral force-displacement relation associated with the stiffness reducing is analyzed. Three damage factors are introduced in the stiffness deterioration analysis to illustrate the damage evolution caused by gradually increasing lateral displacement. The proposed modified quasic-static model with damage evolution or stiffness deterioration has been validated against an experiment we conducted, where a good agreement is clearly evident. Subsequently, a parametric investigation focusing on aspect ratio, initial pre-tension, and ratio of ED (Energy Dissipator) was conducted to evaluate the hysteretic behavior of SCP under quasi-statically cyclic loading.
M.d. Martinez Aires, M. Lopez Alonso, E. Jadraque Gago, R. Pacheco-Torres,
Volume 13, Issue 2 (Transaction A: Civil Engineering June 2015)
Abstract
Workers who carry out manual rebar tying tasks are exposed to muscular-skeletal injuries associated with the use of manual tools and the movements associated with them (force, repetitiveness and awkward wrist postures). This paper presents a background on musculoskeletal injuries directly linked to manual and mechanical rebar tying method is conducted.
The objective of this study is to compare the traditional manual rebar tying method to the innovative mechanical technique. The methodology carried out follows a qualitative and a quantitative analysis of both processes. Firstly, a qualitative analysis is performed by semi-structured interviews to workers. Secondly, a quantitative study is carried out in the region of Andalusia (Spain). This field study includes on-site measurements of lengths of time activities. According to the methodology developed by the International Labour Organization, the work timing is calculated and a comparison is given.
Results state that the operators adapt without difficulty to the mechanical method and it could result in better performance, whilst reducing some of the risks deriving from the manual tying technique.
D.p. Chen, C.w. Miao, J.p. Liu, M.s. Tang,
Volume 13, Issue 3 (Transaction A: Civil Engineering, September 2015)
Abstract
This paper presents theoretical and numerical state-of-the-art information in the field of hygro-thermo-mechanical
deformation simulation in structural concrete. The aspects discussed include coupled hygro-thermo-mechanical performance
of porous materials including concrete, multi-scale simulation of concrete properties especially the volumetric and structural
deformation performance, and the multi-scale simulation of concrete under the coupling effect of multi-physics fields. The
multi-scale simulation section includes the multi-scale simulation of composition and structure in concrete, the multi-scale
simulation of concrete’s mechanical performance, and the multi-scale simulation of durability concerned performance of
concrete. This paper presents an overview of the work, of which data from early 80 recent studies, carried out on the multiscale
simulation of hygro-thermo-mechanical deformation performance of structural concrete. The relating previous studies
and analysis showed that sufficient data have been obtained to give confidence in simulating hygro-thermo-mechanical
performance of concrete based on the theory of heat and mass transfer in porous media, and the clear relationships have been
obtained between moisture-heat transfer and hygro-thermal distribution at different scale. It is necessary to make further
systematic multi-scale research on the relationship between micro-structure and property parameters of cement paste, threephase
basic properties at meso level of concrete and the performance of concrete structures, which makes important practical
significance to solve the crack of large-area and mass concrete structure and improve the durability of concrete structures
X. Liu, K. Sheng, J.h. Hua, B.n. Hong, J.j. Zhu,
Volume 13, Issue 3 (Transaction B: Geotechnical Engineering 2015)
Abstract
In order to improve the utilization of high liquid limit soil, the fundamental properties of high liquid limit soil and its direct utilization method are studied in this paper. This work involves both laboratory and fieldwork experiments. The results show that clay and sandy clay both with high liquid limit can be directly used for the road embankment, and the degree of compaction can be controlled at 88 %. The pack-and-cover method in accordance with Chinese technical specifications is recommended to be operated in the engineering practice. The packed height should be less than 8 meters and the total height of embankment no more than 12 meters in the interests of settlement. From the view of stability, the optimal thickness value of top sealing soil layer and edge sealing soil layer is about 1.5 meter respectively, and the geogrid reinforcement spacing should be about 2.0 meters. In addition, based on Yun-Luo expressway in China filled with high liquid limit soil, the construction techniques and key points of quality control in subgrade with pack-and-cover method are compared and discussed in detail, and the feasibility of these schemes are verified by the experimental results.
A. Allahvedi, H. Hashemi,
Volume 13, Issue 4 (Transaction A: Civil Engineering December 2015)
Abstract
This paper presents an investigation on durability of alkali-activated slag mortar against magnesium sulfate attack. To do so, the immersion tests in 5% magnesium sulfate solution under room temperature and wetting-drying cycles were applied. Mortar specimens from Portland cements type 2 and 5 in accordance to ASTM standard were also prepared and used as reference. The changes in compressive strength and length of specimens were measured at different time intervals and considered for evaluating the extent of degradation. After 360 days of exposure to the magnesium sulfate solution, type 2 and 5 Portland cements and alkali-activated slag cement have shown 61, 41 and 34% reduction in compressive strength and 0.093, 0.057 and 0.021% increase in length, respectively. The specimens were also studied by X-ray diffractometry and scanning electron microscopy for characterizing the chemical products of the degradation process. Main degradation products were ettringite and gypsum for Portland cements and gypsum for alkali-activated slag cement. According to the obtained results, alkali-activated slag cement exhibits a higher sulfate resistance compared to type 2 and even type 5 Portland cements
N. Kaid, M. Cyr, H. Khelafi,
Volume 13, Issue 4 (Transaction A: Civil Engineering December 2015)
Abstract
The paper presents the characterisation of an Algerian natural pozzolan (NP) intended to for use in cement-based materials. The experimental programme was based on different tests on paste and mortar. The pozzolanic activity was assessed by the means of lime consumption over time of mixtures of lime-pozzolan (75% NP and 25% Ca(OH)2, water-binder ratio of 0.45). The degree of reactivity was assessed by observing the crystallographic changes (XRD) and lime consumption (TG) up to 1 year of hydration. The effect of NP on cement-based mixtures was based on the measurement of the water demand and setting time of pastes, and on the compressive strength of mortars, up to one year. The replacement rates of cement by pozzolan were 5, 10 and 15%. A superplasticizer was used (0, 1, 2 and 3% of the binder mass). A calculation of the carbon footprint was investigated in order to assess if the natural pozzolan could be considered as eco-efficient when used in replacement of the clinker. The results showed that NP had a medium pozzolanic reactivity and with a medium-low silica content. The use of NP usually led to a small increase in the water/binder ratio (up to 10%) to maintain constant workability. The setting time was also increased by around 20%. Nevertheless, strength tests showed that the pozzolan had sufficient activity to counteract the water demand, since long-term compressive strength of the binary system (cement + pozzolan) were higher than those of cement alone. The use of NP in replacement of clinker involves a reduction in CO2 emissions for transport up to 1800 km, which is compatible with sustainable development. The results are most promising from both a performance-based and an environmental point of view
Mohsen Gerami, Ali Kheyroddin, Abbas Sivandi-Pour,
Volume 14, Issue 1 (Transaction A: Civil Engineering 2016)
Abstract
Steel-concrete hybrid systems are used in buildings, in which a steel structure has been placed on a concrete structure to make a lighter structure and have a faster construction. Dynamic analysis of hybrid structures is usually a complex procedure due to various dynamic characteristics of each part, i.e. stiffness, mass and especially damping. Dynamic response of hybrid structures has some complications. One of the reasons is the different stiffness of the two parts of structure and another reason is non-uniform distribution of materials and their different features such as damping in main modes of vibration. The available software is not able to calculate damping matrices and analyze these structures because the damping matrix of these irregular structures is non-classical. Also an equivalent damping should be devoted to the whole structure and using the available software. In the hybrid structures, one or more transitional stories are used for better transition of lateral and gravity forces. In this study, an equation has been proposed to determining the equivalent uniform damping ratio for hybrid steel-concrete buildings with transitional storey(s). In the proposed method, hybrid buildings are considered to have three structural systems, reinforced concrete, transitional storey and steel. Equivalent uniform damping ratio is derived by means of a semi-empirical error minimization procedure.
Fatemeh Kazemi, Dr Saeed Reza Khodashenas, Hamed Sarkardeh,
Volume 14, Issue 1 (Transaction A: Civil Engineering 2016)
Abstract
Stilling basins dissipate energy in order to form hydraulic jumps and rotational flows. Hydraulic jump and rotational current phenomenon produces pressure fluctuation at the bottom of stilling basins. In the present study, pressure fluctuations and their locations have been studied in a physical model of Nimrod Dam. Results showed that fluctuations in presence of jump in the basin are high and therefore the fluctuation factors are respectively high. Regarding available empirical equations, the thickness of slab for different hydraulic conditions were calculated and compared in 1D and 2D conditions. By analyzing collected data, it was observed that, results of 1D were underestimated in comparison by 2D calculations.
Shuai Li, Jian-Min Zhang, Wei-Lin Xu, Jian-Gang Chen, Yong Peng, Jun-Ning Li, Xiao-Long He,
Volume 14, Issue 1 (Transaction A: Civil Engineering 2016)
Abstract
The cavitation erosion induced by high flow velocities is very prominent in high head and large unit discharge tunnel. Air entrainment is an effective technology to solve this problem. In this study, numerical simulation and physical model test are applied to the comparative study of air-water flows on bottom and lateral aerator in tunnel. The flow pattern, aeration cavity, air concentration and pressure distribution were obtained and there is a close agreement between the numerical and physical model values. The hydraulic characteristic and aeration effect of anti-arc section are analyzed. The results indicated that added lateral aeration facilities on 1# and 2# aerator can weaken backwater and increase the length of the bottom cavity, but it is limited to improve the air concentration and protect sidewall downstream of the ogee section. Air concentration improved on side walls downstream of anti-arc section when added lateral aeration facility on 3# aerator. The black water triangle zone disappeared and the floor and side walls well protected.
Dongfang Ma, Fengjie Fu, Weiming Zhao, Dianhai Wang, Sheng Jin,
Volume 14, Issue 5 (Transaction A: Civil Engineering 2016)
Abstract
The purpose of this paper is to improve the intelligence and universality of classical method for gating control in the SCOOT system. Firstly, we introduce a method to identify spillovers, and use the occupancy threshold for spillover recognition to trigger this special control logic. Then we present an influence rate model for links upstream of the bottleneck link, and a share ratio model for the downstream links, after analyzing the interrelationship of the traffic flows among adjacent traffic links. With known threshold values for the influence rate and share ratio, we propose a rule and process for selecting the intersections that should be included in the sub-area of the gating control. Thirdly, we determine total capacity adjustments for the incoming and outgoing streams of bottleneck links, with the aim of dissipating the queue to a permissible length within a given period of time. After that, the apportion models for the total adjustments among different paths and links are presented, along with the correlation coefficients of the traffic flows between the bottleneck link and the other links. Next, we ascertain the capacity decrements and increments for the gated and benefiting streams, and define the optimization schemes so as to calculate splits for the gated and benefiting intersections. Finally, we evaluate the advanced method using a VISSIM simulation. The results show that new control method brings significant and positive effects to the bottleneck link itself and to the entire control area.
Ali Rafiee, Marc Vinches,
Volume 14, Issue 6 (Transaction A: Civil Engineering 2016)
Abstract
The dynamic mechanical behaviour of a stone block masonry cupola composed of non-convex discrete elements is studied. This cupola is designed in innovative and modern ways and was recently constructed in southern France. The necessity for an accurate numerical study to take into account the real geometry of each non-convex block is presented. Different results, concerning the stability of the masonry structure, or its mechanical behaviour during a simulated collapsing state, are given for several sets of parameters describing the contact condition between the blocks, or the blocks and the structure foundations, under various seismic loads.
Hossein Soltani-Jigheh,
Volume 14, Issue 7 (Transaction B: Geotechnical Engineering 2016)
Abstract
The main objective of present study is to possible use of plastic waste materials for reinforcing clayey soils. An experimental study was planned to investigate compressibility and undrained shear behavior of clayey soil mixed with plastic waste. The mixtures were prepared with various amount of plastic waste (i.e. 0%, 0. 5%, 1.0%, 1.5% and 3.0% in dry weight) and interactive effect of plastic waste, plastic flexibility, confining pressure and initial density on the behavior of clayey soil was studied by performing compaction, consolidated undrained triaxial and oedometer consolidation test. The results show that plastic wastes do not affect compaction characteristics of clayey soil considerably and adding them to the clay more than a specific value (i.e. 1.0% in this research) causes to change undrained behavior of samples from contractive to dilative. In addition, beyond this specific value, it improves shear strength and reduces compressibility of clay. The rate of increase in shear strength and decrease in compressibility depends on the confining pressure, flexibility of plastic and initial density of samples. It is more noticeable when plastic waste in mixtures is relatively rigid and density and confining pressure are high. Moreover, plastic waste has a negative effect on the free swelling, swelling pressure and swelling index of samples, so that these parameters for plastic waste mixed clay are higher than the associated values of plain clay.
Niloufar Mashhadiali, Majid Gholhaki, Ali Kheyroddin, Rouzbeh Zahiri-Hashemi,
Volume 14, Issue 8 (Transaction A: Civil Engineering 2016)
Abstract
Steel plate shear walls have long been used as a lateral load resisting system. It is composed of beam and column frame elements, to which infill plates are connected. This paper investigates the progressive collapse-resisting capacity of 50-story building 3D model of the strip model of steel plate shear wall comparing with X-braced and moment frame system based on the removing structural elements from a middle and corner of the exterior frame, in the story above the ground. The collapse behavior is evaluated by different nonlinear static and dynamic analyses using conventional analysis software. In this study, vulnerability of structures is also assessed by sensitivity index (SI) regarding the sensitivity of structures to dynamic effect induced by progressive collapse. To identify vulnerable members, resulting actions of nonlinear static analysis, considering load factor to account for dynamic effect, at the failure mode of structure at the specific performance level are compared by the factor of redundancy related to overall strength of structure, with the linear static analysis of damaged model without considering dynamic effect,. Comparing analysis results indicated that in the steel plate shear wall system, the progressive collapse resisting potential is more than X-braced and moment frame. Sensitive index of highly sensitive elements to dynamic effect stated that in the structural models, beams are more vulnerable in moment frame than X-braced frame and SPSW structure, significantly, and vulnerability of columns in X-braced frame and SPSW system is more than moment frame.
Jorge Garcia-Sosa, Ismael Sanchez-Pinto, Roger Gonzalez-Herrera, Eduardo Escalante-Triay,
Volume 15, Issue 1 (Transaction A: Civil Engineering 2017)
Abstract
Based on the methodology of “Understanding by Design”, UbD, the course “Design of Hydraulic Structures” was developed and implemented. A series of learning experiences, with emphasis on hydraulics and hydrology, for civil engineering undergraduate students is presented that encourages the development of high technical and scientific competence, communication skills oral and in written, the ability for teamwork and the capability to learn. The experiences were designed, using the above methodology, based on learning that is desired. Once taught the course, the results obtained were compared based on the planned framework (expectations), the characterization of the student population, the course products as well as the activities, according to the students, considered relevant in the learning process.