Showing 74 results for He
Shuai Li, Jian-Min Zhang, Wei-Lin Xu, Jian-Gang Chen, Yong Peng, Jun-Ning Li, Xiao-Long He,
Volume 14, Issue 1 (Transaction A: Civil Engineering 2016)
Abstract
The cavitation erosion induced by high flow velocities is very prominent in high head and large unit discharge tunnel. Air entrainment is an effective technology to solve this problem. In this study, numerical simulation and physical model test are applied to the comparative study of air-water flows on bottom and lateral aerator in tunnel. The flow pattern, aeration cavity, air concentration and pressure distribution were obtained and there is a close agreement between the numerical and physical model values. The hydraulic characteristic and aeration effect of anti-arc section are analyzed. The results indicated that added lateral aeration facilities on 1# and 2# aerator can weaken backwater and increase the length of the bottom cavity, but it is limited to improve the air concentration and protect sidewall downstream of the ogee section. Air concentration improved on side walls downstream of anti-arc section when added lateral aeration facility on 3# aerator. The black water triangle zone disappeared and the floor and side walls well protected.
Dongfang Ma, Fengjie Fu, Weiming Zhao, Dianhai Wang, Sheng Jin,
Volume 14, Issue 5 (Transaction A: Civil Engineering 2016)
Abstract
The purpose of this paper is to improve the intelligence and universality of classical method for gating control in the SCOOT system. Firstly, we introduce a method to identify spillovers, and use the occupancy threshold for spillover recognition to trigger this special control logic. Then we present an influence rate model for links upstream of the bottleneck link, and a share ratio model for the downstream links, after analyzing the interrelationship of the traffic flows among adjacent traffic links. With known threshold values for the influence rate and share ratio, we propose a rule and process for selecting the intersections that should be included in the sub-area of the gating control. Thirdly, we determine total capacity adjustments for the incoming and outgoing streams of bottleneck links, with the aim of dissipating the queue to a permissible length within a given period of time. After that, the apportion models for the total adjustments among different paths and links are presented, along with the correlation coefficients of the traffic flows between the bottleneck link and the other links. Next, we ascertain the capacity decrements and increments for the gated and benefiting streams, and define the optimization schemes so as to calculate splits for the gated and benefiting intersections. Finally, we evaluate the advanced method using a VISSIM simulation. The results show that new control method brings significant and positive effects to the bottleneck link itself and to the entire control area.
Ali Rafiee, Marc Vinches,
Volume 14, Issue 6 (Transaction A: Civil Engineering 2016)
Abstract
The dynamic mechanical behaviour of a stone block masonry cupola composed of non-convex discrete elements is studied. This cupola is designed in innovative and modern ways and was recently constructed in southern France. The necessity for an accurate numerical study to take into account the real geometry of each non-convex block is presented. Different results, concerning the stability of the masonry structure, or its mechanical behaviour during a simulated collapsing state, are given for several sets of parameters describing the contact condition between the blocks, or the blocks and the structure foundations, under various seismic loads.
Hossein Soltani-Jigheh,
Volume 14, Issue 7 (Transaction B: Geotechnical Engineering 2016)
Abstract
The main objective of present study is to possible use of plastic waste materials for reinforcing clayey soils. An experimental study was planned to investigate compressibility and undrained shear behavior of clayey soil mixed with plastic waste. The mixtures were prepared with various amount of plastic waste (i.e. 0%, 0. 5%, 1.0%, 1.5% and 3.0% in dry weight) and interactive effect of plastic waste, plastic flexibility, confining pressure and initial density on the behavior of clayey soil was studied by performing compaction, consolidated undrained triaxial and oedometer consolidation test. The results show that plastic wastes do not affect compaction characteristics of clayey soil considerably and adding them to the clay more than a specific value (i.e. 1.0% in this research) causes to change undrained behavior of samples from contractive to dilative. In addition, beyond this specific value, it improves shear strength and reduces compressibility of clay. The rate of increase in shear strength and decrease in compressibility depends on the confining pressure, flexibility of plastic and initial density of samples. It is more noticeable when plastic waste in mixtures is relatively rigid and density and confining pressure are high. Moreover, plastic waste has a negative effect on the free swelling, swelling pressure and swelling index of samples, so that these parameters for plastic waste mixed clay are higher than the associated values of plain clay.
Niloufar Mashhadiali, Majid Gholhaki, Ali Kheyroddin, Rouzbeh Zahiri-Hashemi,
Volume 14, Issue 8 (Transaction A: Civil Engineering 2016)
Abstract
Steel plate shear walls have long been used as a lateral load resisting system. It is composed of beam and column frame elements, to which infill plates are connected. This paper investigates the progressive collapse-resisting capacity of 50-story building 3D model of the strip model of steel plate shear wall comparing with X-braced and moment frame system based on the removing structural elements from a middle and corner of the exterior frame, in the story above the ground. The collapse behavior is evaluated by different nonlinear static and dynamic analyses using conventional analysis software. In this study, vulnerability of structures is also assessed by sensitivity index (SI) regarding the sensitivity of structures to dynamic effect induced by progressive collapse. To identify vulnerable members, resulting actions of nonlinear static analysis, considering load factor to account for dynamic effect, at the failure mode of structure at the specific performance level are compared by the factor of redundancy related to overall strength of structure, with the linear static analysis of damaged model without considering dynamic effect,. Comparing analysis results indicated that in the steel plate shear wall system, the progressive collapse resisting potential is more than X-braced and moment frame. Sensitive index of highly sensitive elements to dynamic effect stated that in the structural models, beams are more vulnerable in moment frame than X-braced frame and SPSW structure, significantly, and vulnerability of columns in X-braced frame and SPSW system is more than moment frame.
Jorge Garcia-Sosa, Ismael Sanchez-Pinto, Roger Gonzalez-Herrera, Eduardo Escalante-Triay,
Volume 15, Issue 1 (Transaction A: Civil Engineering 2017)
Abstract
Based on the methodology of “Understanding by Design”, UbD, the course “Design of Hydraulic Structures” was developed and implemented. A series of learning experiences, with emphasis on hydraulics and hydrology, for civil engineering undergraduate students is presented that encourages the development of high technical and scientific competence, communication skills oral and in written, the ability for teamwork and the capability to learn. The experiences were designed, using the above methodology, based on learning that is desired. Once taught the course, the results obtained were compared based on the planned framework (expectations), the characterization of the student population, the course products as well as the activities, according to the students, considered relevant in the learning process.
Mohammadreza Sheidaii, Mehdi Babaei,
Volume 15, Issue 2 (Transaction A: Civil Engineering 2017)
Abstract
Engineering design usually requires considering multiple variances in a design and integrating them appropriately in order to achieve the most desirable alternative. This consideration takes particular importance in the constructional projects of civil engineering. However, frequently, the structural designer’s considerations in civil engineering teams contrast the stylish and creative novelties of architectures. Then, we should take up new methodologies to yield appropriate alternatives which meet artistic aspects of design and simultaneously satisfy the structural designer’s demands. Consequently, the process of design should incorporate the multi-fold aspects of engineer’s requirements and their personal preference. So, in this study, we preset a systematic approach, so-called desirability based design, to perform a directed multi-objective optimal design considering various aspects of a design, based on soft-computing methods. Fuzzy logic integrated with genetic algorithm is employed to build a decision-making fuzzy system based on expert knowledge. It will be employed to conduct the designing process. Illustrative examples show practicality and efficiency of the presented methodology in structural design of several space structures.
Ali Rahmani Firoozjaee, Farzad Farvizi, Ehsan Hendi,
Volume 15, Issue 2 (Transaction A: Civil Engineering 2017)
Abstract
A numerical meshless method is proposed to investigate shallow water equations. Because of The numerical solution of the pure convection equations represents a very important issue in many problems, an Element Free Galerkin (EFG) method is used for solving these equations, and its implementation is described. In this method there is no need to nodal connectivity and just uses nodal data which may be the same as those used in the Finite Element Methods (FEMs) and a description of the domain boundary geometry are necessary. The essential boundary condition is enforced by the penalty method, and the Moving Least Squares (MLS) approximation is used for the interpolation scheme. The numerical efficiency of the proposed method is demonstrated by solving several benchmark examples. Sensitivity analysis on parameters of the EFG method is carried out and results are presented.
Masoud Ahmadi , Hosein Naderpour , Ali Kheyroddin ,
Volume 15, Issue 2 (Transaction A: Civil Engineering 2017)
Abstract
Concrete filled steel tube is constructed using various tube shapes to obtain most efficient properties of concrete core and steel tube. The compressive strength of concrete is considerably increased by the lateral confined steel tube in circular concrete filled steel tube (CCFT). The aim of this study was to present an integrated approach for predicting the steel-confined compressive strength of concrete in CCFT columns under axial loading based on large number of experimental data using artificial neural networks. Neural networks process information in a similar way the human brain does. Neural networks learn by example. The main parameters investigated in this study include the compressive strength of unconfined concrete (f'c), outer diameter (D) and length (L) of column, wall thickness (t) and tensile yield stress (fy) of steel tube. Subsequently, using the reliable network, empirical equations are developed for the confinement effect. The results of proposed model are compared with recently existing model on the basis of the experimental results. The findings demonstrate the precision and applicability of the empirical approach to determine capacity of CCFT columns.
Xiaoling Song, Jiuping Xu, Charles Shen, Feniosky Peña-Mora,
Volume 15, Issue 2 (Transaction A: Civil Engineering 2017)
Abstract
The construction temporary facilities layout planning (CTFLP) requires an identification of necessary construction temporary facilities (CTFs), an identification of candidate locations and a layout of CTFs at candidate locations. The CTFLP is particularly difficult and complex in large-scale construction projects as it affects the overall operation safety and effectiveness. This study proposes a decision making system to decide on an appropriate CTFLP in large-scale construction projects (e.g. dams and power plants) in a comprehensive way. The system is composed of the input, CTF identification, candidate location identification, layout optimization, evaluation and selection, as well as output stages. The fuzzy logic is employed to address the uncertain factors in real-world situations. In the input stage, the knowledge bases for identifying CTFs and candidate locations are determined. Then, CTFs and candidate locations are identified in the following two stages. In the mathematical optimization stage, a multiobjective mathematical optimization model with fuzzy parameters is established and fuzzy simulation-based Genetic Algorithm is proposed to obtain alternative CTFLPs. The intuitionistic fuzzy TOPSIS method is used to evaluate and select the most satisfactory CTFLP, which is output in the last stage. To demonstrate the effectiveness and efficacy of the proposed method, the CTFLP for the construction of a large-scale hydropower dam project is used as a practical application. The results show that the proposed system can assist the contractor to obtain an appropriate CTFLP in a more efficient and effective manner.
Edgar Tapia-Hernández, Tiziano Perea, Marco Islas-Mendoza,
Volume 15, Issue 2 (Transaction A: Civil Engineering 2017)
Abstract
In this paper, the assessment of four short-span steel bridges from 24 to 42 m under local overloaded trucks and ground motion records are presented and discussed. Bridges were virtually located in Mexico, and so the vehicular live loads, earthquake loads due to local seismicity, and other local loads were adapted in the design. A realistic condition of the local design truck for Mexico was selected from survey traffic flows reported for local highways. Nonlinear dynamic analyses were carried out using seven historical records associated with the largest vertical intensities from subduction earthquakes in Mexico. Results are intended to evaluate the local practice, which frequently adopts the current AASHTO LRFD Specifications in the absence of an official local design code for bridge structures. Thus, this research pretends to provide design recommendations for short-span steel bridges in Mexico.
G. P. Ganapathy, R. Gobinath, I. I. Akinwumi, S. Kovendiran, M. Thangaraj, N. Lokesh, S. Muhamed Anas, R. Arul Murugan, P. Yogeswaran, S. Hema,
Volume 15, Issue 3 (Transaction B: Geotechnical Engineering 2017)
Abstract
Soils with poor engineering properties have been a concern to construction engineers because of the need to strike a balance between safety and economy during earthworks construction. This research work investigates the effects of treating a soil having poor geotechnical properties with a bio-enzyme to determine its suitability for use as road pavement layer material. The elemental composition and microstructure of the soil was determined using energy dispersive X-ray spectroscopy and scanning electron microscopy, respectively. The specific gravity, Atterberg limits, compaction, strength and permeability characteristics of the soil was determined for various dosages of the bio-enzyme. The mountain soil is classified as clayey sand and A-2–4, according to unified soil classification and AASHTO classification systems, respectively. With increasing dosage of the bio-enzyme, the plasticity index, maximum dry unit weight and permeability of the soil decreased, while its 28-day California bearing ratio value, unconfined compressive strength and shear strength increased. Consequently, the application of bio-enzyme to the soil improved its plasticity and strength, and reduced its permeability. It, therefore, became more workable and its subgrade quality was improved for use as a road pavement layer material. The stabilized soil can be suitably used for constructing pavement layers of light-trafficked rural (earth) roads, pedestrian walkways and bicycle tracks.
Zhechao Wang, Ron C. K. Wong, Liping Qiao, Wenge Qiu,
Volume 15, Issue 3 (Transaction B: Geotechnical Engineering 2017)
Abstract
The effects of effective stress and void ratio on the secondary compressibility of the sandy and clayey soils were investigated in this study. The coefficient of secondary compression of Ottawa sand in single stage and stepwise loading tests increases with effective vertical stress while that of saturated kaolinite decreases with effective vertical stress. Multi-staged loading tests showed that at a given effective stress, the higher the void ratios of the soils, the higher the coefficients of secondary compression of the soils are. It was concluded that the secondary compressibility of a soil depends on not only the effective stress, but also the void ratio of the soil. A general relationship between the coefficient of secondary compression, and effective stress and void ratio was proposed for soil. The discrepancy of the dependency of secondary compressibility on effective stress for different soils was well explained using this relationship, moreover, the quasi-overconsolidated state of clayed soil induced by time effect and the effect of surcharge preloading on the secondary compressibility of soft ground were discussed in light of the general relationship.
Yang Wang, Kai Su, Hegao Wu, Zhongdong Qian,
Volume 15, Issue 4 (Transaction A: Civil Engineering 2017)
Abstract
The reinforced concrete bifurcation in hydropower station is consistently under high internal water pressure, and its diameter is usually larger than common duct junctions. In order to diminish or to decrease the heavy plastic zone and stress concentration, structure rounding is commonly used on bifurcation. This will bring some changes to the flow characteristic of bifurcation, and it is an interesting attempt to figure out the influence of structure rounding optimization. The Realizable k-ε model was employed in Computational Fluid Dynamics numerical simulation. The water pressure distribution was compared quantitatively at several certain sections. Furthermore, uneven pressure is analyzed by relative standard deviation. Hydraulic characteristics are discussed as well, including flow pattern, excavation volume and head loss in different working conditions. The results indicate that the pressure of pipe wall is uneven, and the maximum and minimum pressure value has a differential of 0.3% - 1.2% compared to relative static water pressure. The pressure unevenness will increase after structure rounding, and it has a positive correlation with structure rounding radius. At the same time, it is more reasonable for structure rounding in obtuse angle region than that in acute angle region, on account of well-distributed flow conditions and better economic benefit.
Mohammad Bagher Anvari, Ali Tavakoli Kashani, Rahim Rabieyan,
Volume 15, Issue 4 (Transaction A: Civil Engineering 2017)
Abstract
The motorcycle is considered as one of the most applicable transportation modes for different types of trips in Iran. According to the report by Iran Police Department in 2011, almost 25% of all crash fatalities are related to the motorcycle riders and their passengers. The objective of this study is to identify the most important factors that contribute to the fault of motorcyclists involved in crashes. This is done by using the Classification And Regression Trees (CART) model to differentiate between at-fault and not-at-fault cases. The results show that the most important factor in determining at-fault probability of motorcyclists is the collision type. According to this fact, the probability of rear-end collision is the highest, while the probability of side collisions is the lowest. The importance of other factors is variable considering the collision type. In the case of rear-end collisions, the passengers characteristics and the age of the rider are the most important factors. However, in the case of side collisions, lighting condition and area type (in both urban and rural roads) are the most important. Finally, it is suggested that, training of riders can reduce rear-end collisions as well as installing systems that warn drivers when they are close enough to motorcycles in side collisions.
Manoochehr Fathi Moghadam,
Volume 15, Issue 4 (Transaction A: Civil Engineering 2017)
Abstract
Stilling basins and hydraulic jumps are designers’ favorable choice for energy dissipation downstream of spillways and outlets. A properly designed stilling basin can ensure considerable energy dissipation in the short distance of a basin. In this study, experiments have been conducted to evaluate effects of a perforated sill and its position on the length of a favorable B-type hydraulic jump in a stilling basin. Perforated sills with different heights and ratio of openings were placed in different positions of the stilling basin. Tests were carried out for three tail water depths to assess the sensitivity of the jump to tail water. The hydraulic characteristics of the jump were measured and compared with continuous sill-controlled and free hydraulic jumps. Results of the experiments confirmed significant effect of the perforated sill on dissipation of energy and development of the jump in a shorter distance. Results are also presented in the form of mathematical models for estimation of the sill height, sill position, and basin length with the inflow measurable parameters of depth and velocity.
Xiaolei Chen, Jianping Fu, Feng Xue, Xiaofeng Wang,
Volume 15, Issue 4 (Transaction A: Civil Engineering 2017)
Abstract
This paper presents a comparative numerical research on the overall seismic behavior of RC frames with different types of rebars (normal versus high strength rebar). A nonlinear numerical model is developed and is validated using experimental results. Comparing the numerical and experimental behaviors shows that the developed model is capable of describing the hysteretic behavior and plastic hinges development of the experimental RC frames with various strength longitudinal steel bars. The validated model is then used, considering the influences of axial load ratios and volumetric ratios of longitudinal rebars of column, to investigate the effects of reinforcement strength on the overall seismic behavior of RC frames. The simulation results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frames reinforced with normal and high strength steel bars have comparable overall deformation capacity. The effect of axial load ratio on the energy dissipation, hysteretic curves and ultimate lateral load of frames with different strength rebars is similar. In addition, increasing the volumetric ratios of longitudinal rebars can increase the ultimate lateral load of frame and improve the plastic hinge distribution of frame.
Junxin Liu, Chunhe Yang, Jianjun Gan, Yutian Liu, Wei Liu, Qiang Xie,
Volume 15, Issue 6 (Transaction B: Geotechnical Engineering 2017)
Abstract
Abstract: Rainfall is an important triggering factor influencing the stability of soil slope. Study on some influences of the rainfall on the instability characteristics of unsaturated soil embankment slope has been conducted in this paper. Firstly, based on the effective stress theory of unsaturated soil for single variable, fluid-solid coupling constitutive equations were established. Then, a segment of red clay embankment slope, along a railway from Dazhou to Chengdu, damaged by rainfall, was theoretical and numerical-simulating researched by considering both the runoff-underground seepage and the fluid-solid coupling. The failure characteristics of the embankment slope and the numerical simulation results were in excellent agreement. In the end, a sensitivity analysis of the key factors influencing the slope stability subjected to rainfall was performed with emphasis on damage depth as well as infiltration rainfall depth. From the analysis in this paper, it was concluded that the intensity of rainfall, rainfall duration and long-term strength of soil have most effect on slope stability when subjected to rainfall. These results suggest that the numerical simulation can be used for practical applications.
Shahin Dabirian, Mostafa Khanzadi, Reza Taheriattar,
Volume 15, Issue 8 (Transaction A: Civil Engineering 2017)
Abstract
The study has been developed a qualitative System Dynamics model to measure sustainability performance of construction project, considering contractors’ tendency to productivity. Construction contractors do not have a clear understanding of sustainability especially in developing countries. However, they welcome higher productivity as a determinant parameter in scheduling and financial success of construction project. Therefore, construction productivity improvement can be employed as an incentive to persuade contractors for implementing sustainability mechanisms in construction project. Sustainability performance has been examined in three aspects of economic, social and environmental by introducing different subsystems and feedback loops. These loops are based on the causal links among the factors affecting construction sustainability and productivity. The findings provide a proper basis for both practitioners and researchers through illustrating the cohesion between productivity and sustainability.
Mr Rakesh Bahera, Mr Anil Kumar, Dr. Lelitha Vanajakshi,
Volume 15, Issue 8 (Transaction A: Civil Engineering 2017)
Abstract
In recent times, Bus Arrival Time Prediction (BATP) systems are gaining more popularity in the field of Advanced Public transportation systems (APTS), a major functional area under Intelligent Transportation Systems (ITS). BATP systems aim to predict bus arrival times at various bus stops and provide the same to passenger’s pre-trip or while waiting at bus stops. A BATP system, which is accurate, is expected to attract more commuters to public transport, thus helping to reduce congestion. However, such accurate prediction of bus arrival still remains a challenge, especially under heterogeneous and lane-less traffic conditions such as the one existing in India. The uncertainty associated with such traffic is very high and hence the usual approach of prediction based on average speed will not be enough for accurate prediction. In order to make accurate predictions under such conditions, there is a need to identify correct inputs and suitable prediction methodology that can capture the variations in travel time. To accomplish the above goal, a robust framework relying on data analytics is proposed in this study. The spatial and temporal patterns in travel times were identified in real time by performing cluster analysis and the significant inputs thus identified were used for the prediction. The prediction algorithm used the Adaptive Kalman Filter approach, in order to take into account of the high variability in travel time. The proposed schemes were corroborated using real-world GPS data and the results obtained are very promising.