Search published articles


Showing 30 results for Shi

S. F. Eftekharzadeh, A. Khodabakhshi,
Volume 12, Issue 3 (Transaction A: Civil Engineering September 2014)
Abstract

The previous studies show that a high percentage of traffic accidents take place in two-lane rural highways and most of which happen at horizontal curves. Meanwhile the horizontal alignment is often subject to hard topographic conditions where because of economic aspects designers are forced to design horizontal curves at grades. Vertical angle of longitudinal slope reduces the normal force of vehicle on road and friction force in tire-pavement surface will decrease. This leads to a lack of sufficient driver control over the vehicle especially if the curve with small radius is located at downgrade. In this paper, the suitability of operating speed and lateral friction coefficient as geometric design criteria for horizontal curves in downgrades are studied with regard to traffic safety and vehicle stability. The investigation of speed reduction of the vehicles running on a horizontal curve at downgrade as a response of driver behavior and the use of friction ellipse theory give the available friction coefficient. Whereas the dynamic analysis of forces applied on the vehicle in curve which is located at downgrade if combined with operating speed results in the required coefficient of lateral friction. Finally, a comparison of these two parameters based on safety evaluation criteria gives an estimation of actual safety level in designing horizontal curve at downgrades with regard to AASHTO’s data in horizontal curve design.
A. Ardeshir, M. Amiri, Y. Ghasemi, M. Errington,
Volume 12, Issue 4 (Transaction A: Civil Engineering December 2014)
Abstract

In the water industry tunnels can be used to transfer water from a basin to other areas over varying distances. The construction of such tunnels is inherently risky and can result in unpredicted events and incidents. It is therefore necessary that thorough risk assessments are carried out as a priority of the owner, contractor and consultant organization. This is so that, through a systematic and logical plan, they can risk posed by these unforeseen events and incidents. In this paper, the risks and their main causes which are often encountered in such projects are identified and assessed. A fault tree method is applied in order to identify the main causes of events and incidents. By its nature a Risk assessment cannot be defined by absolute values and so fuzzy data must be used in order to calculate the probability of incidence and the severity of the risk. This is done on the four main criteria of time, cost, quality and safety. In order to estimate the significance of each criterion and to calculate the significance of the total influence of risk Analytic Hierarchy Process (AHP) is applied. In this paper the case study of Dasht-e Zahab water conveyance tunnel has been selected for discussion as it was subjected to severe and multiple hazards. The results obtained using the method were validated by conducting different interviews with the field experts. It was concluded that by applying the proposed methodology on the case study the risks of the project can be evaluated in a more methodical and accurate way than could be done without using the method. This approach is therefore recommended for similar types of projects where there are complicated risks that must be thoroughly investigated and understood.
M. Kobayashi, U. H. Issa, A. Ahmed,
Volume 13, Issue 1 (Transaction B: Geotechnical Engineering March 2015)
Abstract

The use of recycled bassanite, produced from gypsum wastes, in ground improvement projects is initiated recently in Japan to eliminate the huge quantities of gypsum wastes. Meanwhile the use of recycled bassanite has a positive effect on the environment and economy, it has many challenges. These challenges are related to the release of fluorine more than the standard limits results in contaminated fluorine soil. This research investigates the effect of the amount of bassanite, and water content on the release of fluorine from MC-clay soil stabilized with bassanite, taking in consideration their effect on the compressive strength. Recycled bassanite was mixed with furnace cement with a ratio of 1:1 to prevent the solubility of bassanite. Different amounts of this admixture were mixed with the tested soil at different water contents. Unconfined compression test was used to determine the compressive strength while the solubility of fluorine was used to represent the geo-environmental properties in term of the release of fluorine. Scan electron microscopic (SEM) test was done to identify the development of cementation compounds in the matrix of treated-bassanite soil. Test results showed that, the addition of bassanite had a significant effect on the improvement of compressive strength by increasing the amount of bassanite. Curing time had a significant effect on the increase of compressive strength, the strength increases with the increase of curing time, especially in the later curing time. The release of fluorine increases with increasing the amount of bassanite in soil mixture. The increase of water content had an indirect effect on the release of fluorine while it had a negative effect on the improvement of strength and consuming the amount of admixture. The increase of strength is associated with the decrease of the release of fluorine. Recycled bassanite, produced from gypsum wastes, had a potential to be used as a stabilizer material for MC-clay soil and meet the standards of environment.
H. Liu, M. He, J. Guo, Zh. Hou, Y. Shi,
Volume 13, Issue 2 (Transaction A: Civil Engineering June 2015)
Abstract

Self-centering pier (SCP) has been viewed as a remarkable accomplishment which is able to sustain major lateral loading with reduced structure damage in seismic engineering. Stiffness deterioration observed in experiment is vital for the seismic performance of self-centering concrete pier. In this contribution, the associated stiffness deterioration with respect to the structural damage is modeled in a modified analytical model for SCP comprehensively. In the proposed modified theoretical model, the lateral force-displacement relation associated with the stiffness reducing is analyzed. Three damage factors are introduced in the stiffness deterioration analysis to illustrate the damage evolution caused by gradually increasing lateral displacement. The proposed modified quasic-static model with damage evolution or stiffness deterioration has been validated against an experiment we conducted, where a good agreement is clearly evident. Subsequently, a parametric investigation focusing on aspect ratio, initial pre-tension, and ratio of ED (Energy Dissipator) was conducted to evaluate the hysteretic behavior of SCP under quasi-statically cyclic loading.
Dr. Gh. Tavakoli Mehrjardi, Prof. S.n. Moghaddas Tafreshi, Dr. A.r. Dawson,
Volume 13, Issue 2 (Transaction B: Geotechnical Engineering June 2015)
Abstract

A numerical simulation of laboratory model tests was carried out to develop an understanding of the behaviour of pipes in a trench prepared with 3-Dimensional reinforced (namely "geocell-reinforced" in the present study) sand and rubber-soil mixtures, under repeated loadings. The study reports overall performance of buried pipes in different conditions of pipe-trench installations and the influence of pipe stiffness on backfill settlements, stress distribution in the trench depth and stress distribution along the pipe's longitudinal axis. Good agreements between the numerical results and experimental results were observed. The results demonstrate that combined use of the geocell layer and rubber-soil mixture can reduce soil surface settlement and pipe deflection and eventually provide a secure condition for buried pipe even under strong repeated loads.
Takayoshi Maruyama, Hideaki Karasawa, Shin-Ichiro Hashimoto, Shigeyuki Date,
Volume 15, Issue 2 (Transaction A: Civil Engineering 2017)
Abstract

Pre-cast concrete products are sometimes manufactured in 2 cycles per day with one mold for the purpose of productivity improvement and so forth. In such a case, from the point of view of securing early-time strength which is required at the time of demolding, it is necessary to increase steam curing temperature and then the likelihood of temperature cracking becomes a concern. Moreover, self-compacting concrete (hereinafter refer as “SCC”) is increasingly used to which ground granulated blast-furnace slag is added, in consideration of environment surrounding a plant or operation environment. One choice then is to admix expansive agent in order to prevent cracking due to autogenous shrinkage. However, there is some possibility that high temperature curing required for 2 cycles per day production likely enhances cracking due to expansive agent admixing. In this study, the cause of cracking of large-sized pre-cast concrete products with high amount of expansive agent, in comparison of 1 cycle per day and 2 cycles per day productions was investigated.

As the result, it was confirmed that high temperature steam curing and early demolding of 2 cycles per day production promote thermal stress cracking in contrast to 1 cycle per day production, and at the same time, un expected cracking along main reinforcement is caused by excess expansion due to inappropriate curing of expansive agent.


Ms Ladan Hatami, Dr. Masoud Jamshidi,
Volume 15, Issue 5 (Transaction A: Civil Engineering 2017)
Abstract

Colored self-compacting mortar (C-SCM) is a novel cementitious product that has been recently used in decoration and rehabilitation and has improved aesthetic quality of architectural constructions. C-SCM is susceptible to strength decrease due to excessive pigment presence in the mixture. Optimum pigment content with respect to color intensity and mechanical performance is an important matter that should be determined to prevent mortar failure after construction. In this research, two inorganic pigments in production of colored self-compacting mortar were utilized. The impact of titanium dioxide (TiO2) and iron hydroxide (FeO(OH)) contents on behavior of C-SCMs were investigated in white and gray cement matrixes. Experiments included measurements of compressive strength of mortar cubes and cylinders, flexural strength and colorimetric properties. Analyses on compressive and flexural toughness were applied, as well. It was concluded that pigment content in mix design of colored self-compacting mortar could be optimized with regard to color quality in surface and mechanical strength of the product. Results implied that 5 and 2% of titanium dioxide were the saturation points of color and strength respectively and iron hydroxide at 10% was unsurpassed in C-SCMs containing white cement. Application of both pigments in gray SCMs caused the saturation points of color and strength to occur at 10 and 2%, respectively.


Ali Allahverdi, Mostafa Mahinroosta, Shima Pilehvar,
Volume 15, Issue 5 (Transaction A: Civil Engineering 2017)
Abstract

Compressive strength is as one of the most important properties of concrete and mortar that its measurement may be necessary at both early and later ages. Prediction of compressive strength by a proper model is a fast and cost-effective way for evaluating cement quality under various curing conditions. In this paper, a logarithmic model based on the results of an experimental work conducted to investigate the effects of curing time and temperature on the compressive strength development of chemically activated high phosphorous slag content cement has been presented. This model is in terms of curing time and temperature as independent variables and compressive strength as dependent variable. For this purpose, mortar specimens were prepared from 80 wt.% phosphorous slag, 14 wt.% Portland cement, and 6 wt.% compound chemical activator at Blaine fineness of 303 m2/kg. The specimens were cured in lime-saturated water under temperatures of 25, 45, 65, 85 and 100 ºC in oven. The model has two adjustable parameters for various curing times and temperatures. Modeling has been done by applying dimensionless insight. The proposed model can efficiently predict the compressive strength of this type of high phosphorous slag cement with an average relative error of less than 4%.


Dr. Ashish Dhamaniya,
Volume 15, Issue 7 (Transaction A: Civil Engineering 2017)
Abstract

The present study demonstrates the influence of operating speed on capacity of a midblock section of urban road. Speed – flow data collected at 12 midblock sections of 6-lane and 4-lane divided urban arterials in four metropolitan cities of India are analyzed to determine their capacity. Lane capacity was found to vary from 1482 pcu/hr to 2105 pcu/hr. This variation is explained on the basis of city size and driving behavior, which would influence the free flow speed on the road. Free flow speed was also measured at each section and these speed data were used to determine operating speed (85th percentile of free flow speed of standard car) on the road. Lane capacity was found to be strongly related with operating speed on a road and a second degree polynomial model is developed between the lane capacity and operating speed. This model is further validated by collecting speed flow data at two new sections and their capacity was estimated from field data and from the model developed in the study. The predicted capacity was found to be matching with field capacity and the maximum error was 0.10 percent. Operating speed on a road can vary due to road surface condition, side friction or similar other factors. All these will have influence on capacity of the road. The capacity model suggested in the present study can be a useful tool to determine capacity of an urban road from its operating speed data.


Mr Rakesh Bahera, Mr Anil Kumar, Dr. Lelitha Vanajakshi,
Volume 15, Issue 8 (Transaction A: Civil Engineering 2017)
Abstract

In recent times, Bus Arrival Time Prediction (BATP) systems are gaining more popularity in the field of Advanced Public transportation systems (APTS), a major functional area under Intelligent Transportation Systems (ITS). BATP systems aim to predict bus arrival times at various bus stops and provide the same to passenger’s pre-trip or while waiting at bus stops. A BATP system, which is accurate, is expected to attract more commuters to public transport, thus helping to reduce congestion. However, such accurate prediction of bus arrival still remains a challenge, especially under heterogeneous and lane-less traffic conditions such as the one existing in India. The uncertainty associated with such traffic is very high and hence the usual approach of prediction based on average speed will not be enough for accurate prediction. In order to make accurate predictions under such conditions, there is a need to identify correct inputs and suitable prediction methodology that can capture the variations in travel time. To accomplish the above goal, a robust framework relying on data analytics is proposed in this study. The spatial and temporal patterns in travel times were identified in real time by performing cluster analysis and the significant inputs thus identified were used for the prediction. The prediction algorithm used the Adaptive Kalman Filter approach, in order to take into account of the high variability in travel time. The proposed schemes were corroborated using real-world GPS data and the results obtained are very promising.



Page 2 from 2     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb