Showing 192 results for Ma
Gonçalo Sá, João Sá, Jorge de Brito, B. Amaro,
Volume 12, Issue 2 (Transaction A: Civil Engineering, June 2014)
Abstract
This paper presents an inspection and diagnosis system customized for rendered walls, both interior and external. It classifies all anomalies capable of affecting renderings and most of the likeliest corresponding causes and is supplemented by anomaly-cause and inter-anomaly correlation matrices. In addition, the diagnosis, repair and maintenance techniques suitable for these anomalies are classified. Examples of the files that contain the exhaustive characterization of the anomalies and diagnosis, repair and maintenance techniques are also presented.
The system is the result of an intense literature review, which allowed collecting and organizing the information available on pathology of renders. Next it was validated by mathematical manipulation of the data collected from standard inspections of 55 buildings, in which 150 renderings (100 exterior and 50 interior) were examined.
The system proposed may be included in a proactive maintenance strategy, since it is robust, reliable and has been statistically validated. The systematic structure of this system is innovative and can help the inspector by making his/her work more objective and standardizing procedures.
Anomalies in wall renderings may be prevented/minimized if buildings are properly managed by developing and implementing proactive maintenance plans that cover the following areas: technology (adequate maintenance and repair solutions, including the selection of materials and execution techniques), economy (minimizing running costs) and functionality (appropriate use).
Mohammad Amin Hariri Ardebili, Hasan Mirzabozorg, Reza Kianoush,
Volume 12, Issue 2 (Transaction A: Civil Engineering, June 2014)
Abstract
In the present study, the application of Endurance Time Analysis (ETA) method is investigated on seismic analysis of a high
arch dam. In this method the coupled system is excited using the predesigned intensifying acceleration functions instead of the
real ground motions. Finite element model of an arch dam considering the dam-rock-water interaction effects was developed
in which the concrete and rock were assumed to have linear elastic behavior. The effect of the large displacement in dam body
was considered in numerical model using co-rotational approach. The coupled system was analyzed by conventional Time
History Analysis (THA) method in various seismic performance levels and the results were compared with those obtained from
ETA at the equivalent target time. It was found that ETA method provides the close results to THA with acceptable accuracy
while it reduces the total time of the analyses considerably.
Amir Hossein Jafarieh, Mohammad Ali Ghannad,
Volume 12, Issue 2 (Transaction A: Civil Engineering, June 2014)
Abstract
It is well-known that the behavior of soil-structure systems can be well described using a limited number of non-dimensional parameters. This is the outcome of researches based on the premise that the foundation is bonded to the ground. Here, it is shown the concept can be extended to systems with foundation uplift. A set of non-dimensional parameters are introduced which controls the main features of uplifting systems. The effect of foundation uplift on response of soil-structure systems are investigated parametrically through time history analysis for a wide range of systems subjected to ground motions recorded on different soil types. In particular, the effects of uplift on displacement ratio, defined as the ratio of maximum displacement of the uplifting system to that of the elastic system without uplifting and drift ratio, defined as the ratio of maximum drift of the structure as a part of uplifting soil-structure system to that of the elastic system without uplifting, are investigated. It is observed that in general foundation uplift reduces the drift response of structures, which in turn, results in lower base shear. The reduction reaches about 35 percent for slender structures located on relatively soft soils subjected to strong ground motions. Simplified expressions are suggested to estimate this reduction in the base shear.
A. Kaveh, M. Maniat,
Volume 12, Issue 2 (Transaction A: Civil Engineering, June 2014)
Abstract
It is well known that damaged structural members may alter the behaviour of the structures considerably. Careful observation of these changes has often been viewed as a means to identify and assess the location and severity of damages in structures. Among the responses of a structure, natural frequencies and natural modes are both relatively easy to obtain and independent from external excitation, and therefore, can be used as a measure of the structural behaviour before and after an extreme event which might have led to damage in the structure. This paper applies Charged System Search algorithm to the problem of damage detection using vibration data. The objective is to identify the location and extent of multi-damage in a structure. Both natural frequencies and mode shapes are used to form the required objective function. To moderate the effect of noise on measured data, a penalty approach is applied. Varity of numerical examples including beams, frames and trusses are examined. The results show that the present methodology can reliably identify damage scenarios using noisy measurements and incomplete data.
A. Kaveh, M.s. Massoudi ,
Volume 12, Issue 2 (Transaction A: Civil Engineering, June 2014)
Abstract
Formation of a suitable null basis is the main problem of finite elements analysis via force method. For an optimal
analysis, the selected null basis matrices should be sparse and banded corresponding to sparse, banded and well-conditioned
flexibility matrices. In this paper, an efficient method is developed for the formation of the null bases of finite element models
(FEMs) consisting of tetrahedron elements, corresponding to highly sparse and banded flexibility matrices. This is achieved by
associating special graphs with the FEM and selecting appropriate subgraphs and forming the self-equilibrating systems
(SESs) on these subgraphs. Two examples are presented to illustrate the simplicity and effectiveness of the presented graph-algebraic method.
Jafar Najafizadeh, Mohsen Kamalian, Mohammad Kazem Jafari, Naser Khaji,
Volume 12, Issue 3 (Transaction B: Geotechnical Engineering, July 2014)
Abstract
In this paper, an advanced formulation of the spectral finite element method (SFEM) is presented and applied in order to carry out site response analysis of 2D topographic structures subjected to vertically propagating incident in-plane waves in time-domain. The accuracy, efficiency and applicability of the formulation are demonstrated by solving some wave scattering examples. A numerical parametric study has been carried out to study the seismic response of rectangular alluvial valleys subjected to vertically propagating incident SV waves. It is shown that the amplification pattern of the valley and its frequency characteristics depend strongly on its shape ratio. The natural frequency of the rectangular alluvial valley decreases as the shape ratio of the valley decreases. The maximum amplification ratio along the ground surface occurs at the center of the valley. A simple formula has been proposed for making initial estimation of the natural period of the valley in site effect microzonation studies.
Ali Kavand, S.mohsen Haeri, Arian Asefzadeh, Iraj Rahmani, Abbas Ghalandarzadeh, Ali Bakhshi,
Volume 12, Issue 3 (Transaction B: Geotechnical Engineering, July 2014)
Abstract
In this paper, different aspects of the behavior of 2×2 pile groups under liquefaction-induced lateral spreading in a
3-layer soil profile is investigated using large scale 1-g shake table test. Different parameters of the response of soil and piles including time-histories of accelerations, pore water pressures, displacements and bending moments are presented and discussed in the paper. In addition, distribution of lateral forces due to lateral spreading on individual piles of the groups is investigated in detail. The results show that total lateral forces on the piles are influenced by the shadow effect as well as the superstructure mass attached to the pile cap. It was also found that lateral forces exerted on the piles in the lower half of the liquefied layer are significantly larger than those recommended by the design code. Based on the numerical analyses performed, it is shown that the displacement based method is more capable of predicting the pile group behavior in this experiment comparing to the force based method provided that the model parameters are tuned.
Sandro Machado, Mehran Karimpour-Fard, Miriam Carvalho, Orencio Villar, Atila Caldas,
Volume 12, Issue 3 (Transaction B: Geotechnical Engineering, July 2014)
Abstract
Municipal Solid Waste (MSW) materials are among the most complicated materials for geotechnical engineering as their composition includes an organic fraction, which suffers loss of mass over time, and a fibrous part, which acts as reinforcement, governing the MSW shear behavior. Because of these characteristics MSW can be described as a viscous material which shows time dependent behavior. Since the decomposition of MSW leads to gas and leachate generation, the changes in the MSW’s mechanical behavior could be linked to gas emission and leachate production from landfills. This paper deals with the characteristics of MSW materials to provide the necessary data for efficient and safe landfill design, construction and operation. The MSW physical characteristics such as composition, water content and organic content at varying ages, field and laboratory measurements of methane generation and leachate production, MSW compressibility behavior and its shear strength are covered. By presenting these data the authors hope to promote a better understanding of the mechanical behavior of MSW and provide useful data for use in landfill management tasks.
Nader Shariatmadari, Amir Hossein Sadeghpour, Farshid Razaghian,
Volume 12, Issue 3 (Transaction B: Geotechnical Engineering, July 2014)
Abstract
This research shows the results of studies carried out to define and analyze the effect of aging on MSW behavior of Kahrizak Landfill, the biggest landfill in Iran. Studied samples consisted of fresh samples and also aged ones with 5.5, 14 and 21 years of age which were obtained by mechanical excavators in aged burial locations. Analyzing variation in MSW components illustrates that paste fraction of MSW decreases due to aging process while fibers show a rising trend. Also the moisture content and the organic content of MSW reduce below half of the initial values while the degree of decomposition (DOD) increase up to almost 60% after 14 years. These variations over the time are significantly related to the burying methods and environmental condition of burying location. Shear strength behavior of MSW material was analyzed by some CU tests using large scale triaxial apparatus (D=150mm, H=300mm) on remolded MSW specimens. General observations depict that with an increase in strain level, loading rises without any peak point on stress-strain curves. Fresh samples represent the lowest shear strength followed by 21, 14 and 5.5 year-old samples respectively. There is a direct relationship between fiber content and shear strength. Internal friction angle of aged samples decreases in comparison with fresh ones while cohesion has an inverse trend and rises over the time. According to the effect of burying condition on MSW characteristics, it seems that DOD factor is a more appropriate factor than age in order to analyze long-term behavior of MSW.
M. Effati, M. A. Rajabi, F. Samadzadegan, Sh. Shabani,
Volume 12, Issue 3 (Transaction A: Civil Engineering September 2014)
Abstract
Road transportation by way of automobiles is a very convenient means of transportation. Today, the most detrimental consequence of developing transportation systems in a country is traffic accident that places a huge financial burden on society. This paper investigates the role of information systems in transportation safety that leads to improved planning and operation of the transportation system through the application of new technologies. Current methods for identification of segments of roads with high potential of accident are based on statistical approaches. Since there are not accident records for newly built roads, these methods cannot be used for regional roads that are recently built. This paper presents a GIS based Neuro-Fuzzy modeling for identification of road hazardous zones. The results of proposed approach are compared with statistical methods. It is shown that this method is a cheaper but at the same time robust means of analyzing the level of hazard associated with each road segment under consideration, specially when data are uncertain and incomplete.
M. Derakhshandi, H. R. Pourbagherian, M. H. Baziar, N. Shariatmadari, A. H. Sadeghpour,
Volume 12, Issue 4 (Transaction B: Geotechnical Engineering December 2014)
Abstract
In this study, the mechanical behavior of Vanyar dam was evaluated at the end of construction. A two-dimensional numerical analysis was conducted based on a finite element method on the largest cross-section of the dam. The data recorded by the instruments located in the largest cross-section were compared with the results of the numerical analysis at the place of instruments. The settlement, pore water pressure, and total vertical stress were the parameters used for evaluating the dam behavior at the end of construction. The results showed that the settlements obtained from the numerical analysis were in reasonable agreement with the data recorded by the instruments, which proved that the numerical analysis was implemented based on realistic material properties. In addition, the difference between the instruments and the numerical analysis in terms of total vertical stresses was discussed by focusing on the local arching around the pressure cells. Furthermore, the arching ratios were calculated based on the results of the numerical analysis and the data recorded by the instruments. Moreover, the pore water pressures and total vertical stresses, recorded by piezometers and pressure cells, respectively, were the two parameters utilized for evaluating the hydraulic fracturing phenomena in the core. The results demonstrated that the maximum settlement obtained from the numerical analysis was 1 m, which corresponded to 46 m above the bedrock on the core axis. The recorded data in the core axis indicated that maximum settlement of 0.83 m happened 40 m above the bedrock. In addition, maximum pore water pressure ratio recorded by the instruments (Ru =0.43) was more than that obtained from the numerical analysis (Ru =0.26) this difference was due to the local arching around the pressure cells. Furthermore, the arching ratios in Vanyar dam were found to be 0.83 to 0.90. In general, the results revealed that the dam was located on a safe side in terms of critical parameters, including settlement and hydraulic fracturing. In addition, results of the numerical analysis were consistent with those provided by the monitoring system
M. Karimpour Fard, N. Shariatmadari, M. Keramati, H. Jafari Kalarijani,
Volume 12, Issue 4 (Transaction B: Geotechnical Engineering December 2014)
Abstract
Due to the existence of fibrous materials such as plastic fragments, the strength anisotropy of Municipal Solid Waste
(MSW) materials is the main source of differences between their mechanical response in direct shear and triaxial apparatus.
As an extension of earlier research on the mechanical behavior of MSW using a large traixail apparatus, results presented in
Shariatmadari et al. [1] and Karimpour-Fard et al. [2], the current study was programmed and executed. MSW samples were
tested using a computer controlled large shear box apparatus with normal stress levels ranging between 20 to 200 kPa. The
effect of fiber content, fiber orientation, aging and shearing rate on the response of MSW were addressed. The results showed
that shear strength of MSW increases with normal stress, although, in spite of the presence of reinforcement elements in MSW
and unlike the results from triaxial tests, no strain hardening could be observed in their mechanical response. An increase in
the shear strength of MSW was observed with increasing the shearing rate. Increasing the shearing rate from 0.8 to 19
mm/min, enhanced the shear strength of samples from 16 to 27% depending on the shear displacement level. Although, the
same trend was investigated in traixial tests, but lower rate-sensitivity in the mechanical response of MSW in direct shear tests
were observed.
Unlike the results of triaxial tests with aging process, mobilized shear strength level of MSW samples tested under direct
shearing decreased comparing fresh samples. It was also observed that altering the fiber content and their orientation could
affect the mechanical response and shear strength of the MSW. Additionally, there is an optimum fiber angle in MSW which
yields the highest level of shearing strength.
R. Perumal, K. Nagamani,
Volume 12, Issue 4 (Transaction A: Civil Engineering December 2014)
Abstract
An experimental study on the impact performance of silica fume concrete and steel fiber reinforced concrete at 28 days and 56 days under the action of repeated dynamic loading was carried out. In this experimental investigation, w/cm ratios of 0.4 and 0.3, silica fume replacement at 10% and 15% and crimped steel fibers with an aspect ratio of 80 were used. Results indicated that addition of fibers in high-performance concrete (HPC) can effectively restrain the initiation and propagation of cracks under stress, and enhance the impact strengths, toughness and ductility of HPC. Pulse velocity test was carried out for quality measurements of high-performance steel fiber reinforced concrete. Steel fibers were observed to have significant effect on flexural strength of concrete. The maximum first crack strength and ultimate failure strength at 28 days were 1.51 times and 1.78 times, respectively at 1.5% volume fraction to that of HPC. Based on the experimental data, failure resistance prediction model was developed with correlation coefficient (R) = 0.96 and absolute variation determined is 1.82%.
L. Ma, P. Zhang,
Volume 12, Issue 4 (Transaction A: Civil Engineering December 2014)
Abstract
This paper aims to develop a quantitative game model for preventing construction project managers from moral hazard problem from the standpoint of construction enterprises in China. The authors analyze the sources of construction managers’ moral hazard behaviors under China’s specific situation on the basis of the principal-agent theory, establish a game theoretic model to analyze the moral hazard problem between construction enterprises and construction project managers, and calculate the equilibrium solution through building up the payoff matrix. Our crucial contribution is a quantitative characterization of risk deposit system and performance appraisal system which help to resolve the moral hazard problem of construction project managers. The solution results show that the probability of moral hazard problem of construction project managers can be reduced after implementing risk deposit system and performance appraisal system. Thus the two systems we proposed can be taken by China’s construction enterprises as the effective measures to resolve moral hazard problem of construction project managers.
S. Raut, R. Ralegaonkar, S. Mandavgane,
Volume 12, Issue 4 (Transaction A: Civil Engineering December 2014)
Abstract
It has been brought to our attention that the article [1], published in International Journal of Civil Engineering, is a republishing material from a previous publication published in
Journal of Energy Engineering[2]. The editorial board of IJCE consider this action as an infringement of professional ethics and therefore the decision has been made to retract of the article.
The authors’ response provided by
Journal of Energy Engineering to us, was not satisfactory from this journal's point of view for this unfortunate situation (the documents are kept in the journal’s offices). Any inconvenience this may have caused by authors to the Readers due to improper action of the authors should be apologized by them.
[1] “Application of Small-Scale Experimental Models for Thermal Comfort Assessment of Sustainable Building Materials” by S. P. Raut, S. A. Mandavgane, and R. V. Ralegaonkar. International Journal of Civil Engineering, Vol. 12, No. 4, Transaction A: Civil Engineering, December 2014
Received: May 2013, Revised: December 2013, Accepted: January 2014. This article should be considered as retracted.
[2] Thermal Performance Assessment of Recycled Paper Mill Waste–Cement Bricks Using the Small-Scale Model Technique” by Sanjay Raut, Sachin Mandavgane, and Rahul Ralegaonkar. J. Energy Eng., 2014, 140(4): 04014001. http://dx.doi.org/10.1061/(ASCE)EY.1943-7897.0000171
Submitted on April 9, 2013; approved on October 25, 2013; published online on October 29, 2013.
H. Naghash Toosi, M. H. Sebt, R. Maknoon,
Volume 12, Issue 4 (Transaction A: Civil Engineering December 2014)
Abstract
Project Management knowledge has been used in many project oriented organizations in last two decades across the world. Despite, rate of project success did not change during these years. We believe there is a basic challenge in projects environment for managing them based on its inherent characteristics. In fact, project management knowledge use theories and concepts that are belong to process management world, as a different world. There is no enough attention to project characteristics as a fundamental differentiation for coping projects. Identification of construction projects nature in order to discern variables that create the project behaviors is main concern of the paper.Considering project characteristics in this research revealed construction project nature creates from combination two aspects. First, detecting environmental changes to develop a need and second prepare resources structure to respond the need. Important management challenge in this model is environmental continuous changes that alter the need and exchange resources structure. So, the paper considers how these aspects can be operationalized for developing a dynamic project management model. It gives some ideas about why project complexity might be considered to be increasing, and how construction projects move towards shorter timescales. The effectiveness of the model is verified by applying it for predicting some construction projects behavior. The results of the paper may capable future project managers to test any decision before its applying and lead to a new project management tool for construction projects management.
A. Allahverdi, M. Mahinroosta,
Volume 12, Issue 4 (Transaction A: Civil Engineering December 2014)
Abstract
It was found out that the logarithmic models fit the cement–slag blend systems well. In the present study, based on the experimental results, a logarithmic model has been developed to predict the compressive strength of chemically activated high phosphorous slag content cement. Mixes of phosphorous slag (80 wt.%), Portland cement (14 wt.%) and compound chemical activator (6 wt.%) were prepared at different Blaine finenesses using a laboratory ball mill. Compressive strengths of mortar specimens cured in lime-saturated water were measured at different curing times. Mathematical model was prepared in terms of curing time and water-to-cement ratio as independent variables and compressive strength as dependent variable. The comparisons between the model reproductions and the experimentally obtained results confirm the applicability of the presented model.
M. C. Yılmaz, Ö. Anıl, B. Alyavuz, E. Kantar,
Volume 12, Issue 4 (Transaction A: Civil Engineering December 2014)
Abstract
Experiments were carried out to observe the influence of loading type on concrete beam specimens. Beam specimens made of similar concrete mixture with the same geometry were tested under three point static loading and low velocity drop weight impact loading. Load – displacement behavior, absorbed energy dissipation capacity, stiffnesses, failure modes of beam specimens were obtained and discussed. A finite element (FE) model was prepared in ANSYS Explicit STR software and the results of FE analysis were compared with experimental results. The loading type and loading rate have significant influence on the maximum load, stiffness and energy dissipation capacity. Numerical results obtained from ANSYS Explicit STR FE models are consistent with the experimental results.
N. Shariatmadari, A.h. Sadeghpour, M. Mokhtari,
Volume 13, Issue 1 (Transaction A: Civil Engineering March 2015)
Abstract
The physical properties of the municipal solid waste (MSW) in Kahrizak Landfill (Tehran, Iran) and its changes due to aging were investigated in this research. A study of the components of the fresh MSW in this landfill showed that more than 60% of it was made from the wastes of foods, fruits, vegetables and organic materials. Next to that, paper/cardboard and plastics, with contributions of 14% and 11%, comprised the greatest parts of the waste materials. Meanwhile, the results obtained from these studies revealed that the contribution of the organic part has been decreased during the last two decade by about 20% while the plastics and paper/cardboard contribution has been increased by the same amount. In order to investigate the effect of aging on the physical properties of MSW, waste samples of 5.5, 14 and 21 years of age were obtained by excavating the aged waste burial regions of this landfill. A study of the changes in the composition of waste materials through aging also revealed that the portion of paste was decreased from 25% to 40% due to the decomposition process, while the contribution of plastics and fabrics was increased up to 200%. Particle size became finer with the mean size being reduced from 70 mm in the fresh wastes to 20 mm in 21-year-old wastes due to the decomposition process. The moisture content of the fresh waste samples was reported to be more than 150%, which was considerably larger than that of other existing landfills. Along with the increase in the age of the waste samples, the moisture content was decreased by as much as one third of the initial value. Furthermore, since the waste mass became more homogeneous by age, the variation of the moisture content was reduced. The organic content of the 14-year-old waste was found to be 20%, which was less than 0.3 of the initial value. Moreover, the variation of the organic content in the waste samples was directly related to the moisture content of the samples with both parameters being reduced to less than one third of the initial value in the older samples. Investigation of the moisture content and the organic content of the aged samples showed that the burial location had a significant effect on the trend of variations. The average density of the fresh waste was measured to be 3.5 and 7.3 kN/m3 after production and burial, respectively. It was found that the average density of the fresh waste grew to about 12kN/m3 as the age was increased.
A. Shojaei, H. Tajmir Riahi, M. Hirmand,
Volume 13, Issue 1 (Transaction A: Civil Engineering March 2015)
Abstract
Incremental launching is a widespread bridge erection technique which may offer many advantages for bridge designers. Since internal forces of deck vary perpetually during construction stages, simulation and modeling of the bridge behavior, for each step of launching, are tedious and time consuming tasks. The problem becomes much more complicated in construction progression. Considering other load cases such as support settlements or temperature effects makes the problem more intricate. Therefore, modeling of construction stages entails a reliable, simple, economical and fast algorithmic solution. In this paper, a new Finite Element (FE) model for study on static behavior of bridges during launching is presented. Also a simple method is introduced to normalize all quantities in the problem. The new FE model eliminates many limitations of some previous models. To exemplify, the present model is capable to simulate all the stages of launching, yet some conventional models of launching are insufficient for them. The problem roots from the main assumptions considered to develop these models. Nevertheless, by using the results of the present FE model, some solutions are presented to improve accuracy of the conventional models for the initial stages. It is shown that first span of the bridge plays a very important role for initial stages it was eliminated in most researches. Also a new simple model is developed named as "semi infinite beam" model. By using the developed model with a simple optimization approach, some optimal values for launching nose specifications are obtained. The study may be suitable for practical usages and also useful for optimizing the nose-deck system of incrementally launched bridges.