Search published articles


Showing 533 results for Type of Study: Research Paper

Zhechao Wang, Ron C. K. Wong, Liping Qiao, Wenge Qiu,
Volume 15, Issue 3 (5-2017)
Abstract

The effects of effective stress and void ratio on the secondary compressibility of the sandy and clayey soils were investigated in this study. The coefficient of secondary compression of Ottawa sand in single stage and stepwise loading tests increases with effective vertical stress while that of saturated kaolinite decreases with effective vertical stress. Multi-staged loading tests showed that at a given effective stress, the higher the void ratios of the soils, the higher the coefficients of secondary compression of the soils are. It was concluded that the secondary compressibility of a soil depends on not only the effective stress, but also the void ratio of the soil. A general relationship between the coefficient of secondary compression, and effective stress and void ratio was proposed for soil. The discrepancy of the dependency of secondary compressibility on effective stress for different soils was well explained using this relationship, moreover, the quasi-overconsolidated state of clayed soil induced by time effect and the effect of surcharge preloading on the secondary compressibility of soft ground were discussed in light of the general relationship.


Jun Lin, Guojun Cai, Songyu Liu, Anand J. Puppala, Haifeng Zou,
Volume 15, Issue 3 (5-2017)
Abstract

The correlations and relationships between electrical resistivity and geotechnical parameters of soils have become very important for site investigation. However, there is a lack of understanding about the relationships between electrical resistivity and geotechnical parameter values. The resistivity piezocone penetration tests and laboratory tests have been conducted for geotechnical investigations of marine clay in Jiangsu province of China to establish quantitative relationships between electrical and geotechnical data. The geotechnical investigation reveals that electrical resistivity values are very low for marine clay in Jiangsu, ranging from 5 to 10 Ω m. The correlations between electrical resistivity and geotechnical parameters are examined using Spearman’s rank correlation test that is a rank-based test for correlation between two variables without any assumption about the data distribution. It was shown that the electrical resistivity has strong bonds with the moisture content, void ratio, salt content and plasticity index. In terms of quantitative relationships, good fitting relationships between electrical resistivity and selected geotechnical parameters are observed. The statistical analysis indicates that the electrical resistivity is a good indirect predictor of selected geotechnical parameters. The data studied demonstrates the usefulness of the in situ resistivity method in geotechnical investigations, which have an advantage over other geotechnical methods in cost performance.


Suresh Prasad Singh, Meena Murmu,
Volume 15, Issue 4 (6-2017)
Abstract

This paper outlines the effects of curing conditions on the strength and hydration products of lime activated slag cement. The slag cement was prepared by activating the ground granulated blast furnace slag with lime and plaster of Paris. The curing of mortar specimens was done at temperatures of 270, 450,600,750C and the compressive strength of specimens were determined after curing periods of 3,7, 28, 56 and 90days. The curing temperature is found to influence both the early and later age strengths. For the present test conditions the highest 90days compressive strength was found to be 47.63MPa for the specimen cured at temperature of 600C. Further, the developed strength in mortar specimens were correlated with the hydration products and microstructure using X-ray diffraction and scanning electron microscope results. Generalized reduced gradient technique is adopted to find the optimum curing temperature for the given raw material composition and this is found to vary marginally on curing period. 


Özgür Çakır, Muzaffer M. Tüfekçi,
Volume 15, Issue 4 (6-2017)
Abstract

An experimental program was carried out in order to investigate the usability of recycled coarse aggregate (RCA) concrete with and without ground granulated blast furnace slag (GGBFS). The RCA was derived from concrete having compressive strength of 47.6 MPa. Twelve concrete mixtures having various RCA (0-25-50-100%) and GGBFS (0-30-60%) replacement levels were designed with a water-to-binder (w/b) ratio of 0.50. Fresh concrete properties were observed through workability and slump loss. Compressive strength, tensile splitting strength, bond strength, ultrasonic pulse velocity, water absorption and density of hardened concretes were also determined at 7 and 28 days and the relations between physical properties and mechanical properties of RCA concretes with/without GGBFS were investigated. The RCA content significantly improved the tensile splitting strength of the concrete according to the compressive strength and the use of 60% GGBFS content in RCA concrete had a marginal increasing effect on the tensile splitting strength. The mixes containing 100% RCA was found to be noticeably beneficial in terms of the bond strength and the highest bond strengths were obtained with the use of 60% GGBFS content in RAC for all series at 28 days. However the lowest density and the greatest water absorption was obtained for RAC and an inverse relationship between the density and the water absorption ratio was determined.



Volume 15, Issue 4 (6-2017)
Abstract

THIS IS THE REVISED VERSION OF THE PAPER A-10-581-3, CONSIDERED AS "MAJOR REVISION": One of the best methods to improve structural seismic behavior is to strengthen the infills by shotcreting. Most rehabilitation codes have a special part for masonry buildings and masonry infill panels. However they are completely silent for infills improved by concrete covers, probably for the lack of sufficient experimental test data. This paper focuses on the ultimate strength and modification factor of this type of infill panels, based on some experimental studies. The proposed formula of the existing codes for the equivalent width of the masonry infill panels is improved for the ultimate strength of shotcreted infill panels. It is also shown that the modification factors of the masonry and clay tile infill panels are downgraded and upgraded, respectively, if they are rehabilitated by concrete covers. The envelopes of the load-displacement behavior of the specimens are applied to calculate the modification factor, rather than the standard back bone curves. It is shown that they give more conservative values for the m-factor. Subsequently, some suggestions are proposed to estimate m-factor of shotcreted infill panels.


Ali Allahverdi, Ebrahim Najafi Kani, Babak Shaverdi,
Volume 15, Issue 4 (6-2017)
Abstract

Present work is devoted to a better insight into the identification of carbonation versus efflorescence formation in alkali-activated blast-furnace slag and investigates the relation between the chemical composition of the alkali-activator and the extent of the occurrence of these two phenomena. Obtained results showed that mixes of relatively lower alkali contents suffers not only from weak compressive strength due microstructural defects, but also from carbonation during the first few days. On the other hand, mixes containing relatively higher alkali contents strongly suffers from efflorescence formation in spite of their interestingly high compressive strengths. Carbonation during the first few days can partially neutralize the alkali content of the surface layers of the material which in turn significantly affects the activation mechanism leading to the formation of binding compounds of lower degree of Si substitution with Al in the molecular structure.



Volume 15, Issue 4 (6-2017)
Abstract

Bridges normally undergo nonlinear deformations during a near field strong ground motion resulting in a critical deviation of their columns from the plumb state due to considerable residual deformations. These excessive residual deformations make a bridge, which has not collapsed, ‘irreparable’ and in turn ‘not operable.’ Therefore, reasonable prediction of these types of bridge piers deformations is of great importance in order to evaluate the serviceability of bridges subjected to a seismic scenario. Conventional hysteresis models formulated for typical concrete columns are normally used for this purpose which most of times fail to correctly predict the residual deformations occurred as a result of a one-sided or directivity pulse excitation. The present research aims at development of a peak oriented hysteresis model being able to regenerate residual deformations more reasonable compared to the conventional hysteresis models. This multi linear peak oriented model considers strength deterioration in each half cycle in addition to stiffness degradations in unloading cycles. Yielding points differ in both positive and negative sides of the hysteresis model that enables us to define a different elastic stiffness of both sides in asymmetric concrete sections. Another remarkable property of this model is breaking points and strength deterioration in unloading and reloading stages. This work also compares the obtained results to the conventional hysteresis models, namely bilinear, Clough, Q-Hyst, Takeda and Bouc-Wen in terms of prediction of residual nonlinear deformations in cyclic or dynamic analysis of reinforced concrete single-column bridge piers. The obtained results prove higher relative accuracy of the proposed model.


Marcin Gajzler, Krzysztof Zima,
Volume 15, Issue 4 (6-2017)
Abstract

The study presents a model for the evaluation of construction projects from the point of view of the investor. The problem lies in choosing the best solution from the point of view of many criteria. The proposed model is based on a multi-criteria comparative analysis using fuzzy logic. The first part of the paper presents a selection of criteria describing the construction project along with their description. The set of attributes describing the analyzed object was determined on the basis of the synthesis of specific proposals for the parameters of construction projects. The set of criteria has been divided into two groups: technical, technological and organizational criteria and separately the economic criteria. Then, the number of variables describing the observations was checked using principal component analysis (PCA). Course of action was presented in the event of multiple criteria analysis using the fuzzy set theory. Both the weights and the evaluations of individual criteria were modelled using membership functions due to the fact that when describing a construction project, or the validity of the criteria of describing variables, they are approximate. An analysis of the correlation of selected project criteria was presented. The proposed decision support model of assessing a construction project makes possible to compare various variants based on 11 factors identified. The use of fuzzy logic has enabled more accurate description of the phenomenon analysed when the exact parameters of the project in the planning and preparation stage of the project are not known.


Yang Wang, Kai Su, Hegao Wu, Zhongdong Qian,
Volume 15, Issue 4 (6-2017)
Abstract

The reinforced concrete bifurcation in hydropower station is consistently under high internal water pressure, and its diameter is usually larger than common duct junctions. In order to diminish or to decrease the heavy plastic zone and stress concentration, structure rounding is commonly used on bifurcation. This will bring some changes to the flow characteristic of bifurcation, and it is an interesting attempt to figure out the influence of structure rounding optimization. The Realizable k-ε model was employed in Computational Fluid Dynamics numerical simulation. The water pressure distribution was compared quantitatively at several certain sections. Furthermore, uneven pressure is analyzed by relative standard deviation. Hydraulic characteristics are discussed as well, including flow pattern, excavation volume and head loss in different working conditions. The results indicate that the pressure of pipe wall is uneven, and the maximum and minimum pressure value has a differential of 0.3% - 1.2% compared to relative static water pressure. The pressure unevenness will increase after structure rounding, and it has a positive correlation with structure rounding radius. At the same time, it is more reasonable for structure rounding in obtuse angle region than that in acute angle region, on account of well-distributed flow conditions and better economic benefit.


Alireza Habibi, Keyvan Asadi,
Volume 15, Issue 4 (6-2017)
Abstract

One kind of the irregularities in structures, with considerable effect on seismic performance, is setback in elevation that causes large damage especially in the vicinity of the irregularity. The main objective of this research is to propose and develop drift based index to estimate damage to Reinforced Concrete Moment Resisting Frames (RCMRFs) with setback. For this purpose, first, inelastic dynamic time-history analysis is performed on several frames with different types of setbacks subjected to various earthquake records and damage to them is computed by the Park-Ang damage index. Then two relations between the damage and drift are derived by applying irregularity indices to account for setback effects. It is shown that the proposed damage indices are capable to estimate the damage index of setback frames.


Mohammad Bagher Anvari, Ali Tavakoli Kashani, Rahim Rabieyan,
Volume 15, Issue 4 (6-2017)
Abstract

The motorcycle is considered as one of the most applicable transportation modes for different types of trips in Iran. According to the report by Iran Police Department in 2011, almost 25% of all crash fatalities are related to the motorcycle riders and their passengers. The objective of this study is to identify the most important factors that contribute to the fault of motorcyclists involved in crashes. This is done by using the Classification And Regression Trees (CART) model to differentiate between at-fault and not-at-fault cases. The results show that the most important factor in determining at-fault probability of motorcyclists is the collision type. According to this fact, the probability of rear-end collision is the highest, while the probability of side collisions is the lowest. The importance of other factors is variable considering the collision type. In the case of rear-end collisions, the passengers characteristics and the age of the rider are the most important factors. However, in the case of side collisions, lighting condition and area type (in both urban and rural roads) are the most important. Finally, it is suggested that, training of riders can reduce rear-end collisions as well as installing systems that warn drivers when they are close enough to motorcycles in side collisions.


Muhammad Yousaf, Zahid Ahmed Siddiqi, Muhammad Burhan Sharif, Asad Ullah Qazi,
Volume 15, Issue 4 (6-2017)
Abstract

In this study, a comparison is made between force and displacement controlled non-linear FE analyses for an RC beam in flexure with partially developed steel bars. An FE model with slightly unsymmetrical reinforcement was analyzed by applying two-point loading using both force and displacement controlled methods. The responses obtained using ANSYS-13 were validated against available experimental data. Combined comparative display of flexural response of the beam using force and displacement controlled analysis, that has least been addressed in the literature, is given here. Study choses large-deformation-nonlinear plastic analysis scheme, discrete modeling approach for material modeling and program-chosen incremental scheme following Newton-Raphson method. The results show that displacement controlled approach is efficient in terms of time saving and less disk space requirement along with the ability to give falling branch of load-deflection response, if element displacement capacity still exists. Moreover, it gives an early estimate of the load carrying capacity of the structural element along with suitable values of convergence and non-linear solution parameters. However, for a beam with unsymmetrical detailing, force controlled analysis method seems to yield more realistic and practical results in terms of mid span deflection and beam cracking behavior compared with assumed symmetric displacement controlled technique. It also gives true fracture prediction at ultimate load level, which is not true for the displacement controlled method as the computer code forces the model to maintain equal displacements at two load points, falsely increasing the capacity of the beam.


Artur Duchaczek, Zbigniew Mańko,
Volume 15, Issue 4 (6-2017)
Abstract

The paper is presented an attempt to assess service life of steel girders in military bridges (or by-pass temporary bridges) when fatigue cracks are detected in them. A function describing the geometry of fatigue cracks, the so-called crack shape factor Y, for two different, assumed calculated models, was presented. The function was used to plot sample graphs allowing assessing the remaining service life of such structural elements or engineering structures in a simple way. This method of analyzing can be used not only for the military bridges but also for other steel structures with existing cracks. The work is also presented assessments of possible applications of two FEM calculated models using shell elements to test stress and deformation at the top part of a fatigue crack located in a web of a steel girder used in the military bridges. The results of the conducted numerical analyses were compared with the results obtained in experimental research conducted in laboratory conditions using extensometers.


Farshad Homaei, Hamzeh Shakib, Masoud Soltani,
Volume 15, Issue 4 (6-2017)
Abstract

In this paper, the probabilistic seismic performance of vertically irregular steel buildings, considering soil-structure interaction effects, is evaluated. Various irregular distributions of structural properties, including mass, stiffness and strength along the height of three-dimensional moment resisting steel frames were intended. The finite element model of soil medium was created with solid elements below the structure. The nonlinear material behavior of soil was considered as well. Nonlinear incremental dynamic analysis was performed to evaluate the flexible-base structural performance in the framework of probabilistic performance-based earthquake engineering. According to the median curves of intensity-demand of structures, it is concluded that non-uniform height-wise distribution of lateral resistance properties of steel structures varies the displacement demand and the seismic capacity of the irregular frames, compare to the regular structure. The capacity variation of most irregular frames is more obvious at the nonlinear phase of structural behavior. Due to the foundation flexibility, the damage concentration raises in the bottom floor and the irregularity increase the seismic demands of the lower floors of the system. Among all the irregular steel frames, the average increase of the displacement demand and reduction of the seismic capacity are maximal for the strength and concurrent variation of stiffness and strength irregularity models, respectively. Additionally, mass irregularity shows minor influence in the seismic demand and capacity variations of the steel frames. The predominant influence of stiffness and strength irregularities (soft and weak story) is observed in reduction of the structural ductility factor and the mean annual frequency of exceeding limit states.


Manoochehr Fathi Moghadam,
Volume 15, Issue 4 (6-2017)
Abstract

Stilling basins and hydraulic jumps are designers’ favorable choice for energy dissipation downstream of spillways and outlets. A properly designed stilling basin can ensure considerable energy dissipation in the short distance of a basin. In this study, experiments have been conducted to evaluate effects of a perforated sill and its position on the length of a favorable B-type hydraulic jump in a stilling basin. Perforated sills with different heights and ratio of openings were placed in different positions of the stilling basin. Tests were carried out for three tail water depths to assess the sensitivity of the jump to tail water. The hydraulic characteristics of the jump were measured and compared with continuous sill-controlled and free hydraulic jumps. Results of the experiments confirmed significant effect of the perforated sill on dissipation of energy and development of the jump in a shorter distance. Results are also presented in the form of mathematical models for estimation of the sill height, sill position, and basin length with the inflow measurable parameters of depth and velocity.


Xiaolei Chen, Jianping Fu, Feng Xue, Xiaofeng Wang,
Volume 15, Issue 4 (6-2017)
Abstract

This paper presents a comparative numerical research on the overall seismic behavior of RC frames with different types of rebars (normal versus high strength rebar). A nonlinear numerical model is developed and is validated using experimental results. Comparing the numerical and experimental behaviors shows that the developed model is capable of describing the hysteretic behavior and plastic hinges development of the experimental RC frames with various strength longitudinal steel bars. The validated model is then used, considering the influences of axial load ratios and volumetric ratios of longitudinal rebars of column, to investigate the effects of reinforcement strength on the overall seismic behavior of RC frames. The simulation results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frames reinforced with normal and high strength steel bars have comparable overall deformation capacity. The effect of axial load ratio on the energy dissipation, hysteretic curves and ultimate lateral load of frames with different strength rebars is similar. In addition, increasing the volumetric ratios of longitudinal rebars can increase the ultimate lateral load of frame and improve the plastic hinge distribution of frame.


Hyun-Ki Choi,
Volume 15, Issue 4 (6-2017)
Abstract

This study investigated the structural behaviors of reinforced concrete shear walls containing opening and slab. A series of three half-scale shear wall specimens were tested: a solid wall (WS-Solid), a wall with opening and slab (WS-023), and a wall with opening but no slab (WB-0.23). Using the experimental results, the reduction in the load-carrying capacity of the wall due to the loss of cross section was evaluated. Its contribution to the moment resisting capacity of the total system of coupling elements and its structural behavior was also examined. The results of experiments conducted on the WS-0.23 specimen with artificial damage due to installation of the opening, showed that the load-carrying capacity of the wall decreased as a result of the opening. It is apparent that the influence of cutting reinforcing bars and reduction of effective sectional area lead to early first yield of the reinforcing bars before the allowable limit of the drift ratio of the shear walls is reached. This decrease in the load-carrying capacity of the shear wall because of installation of openings is significantly different from the results of previous studies. This is because slabs and the remaining wall function as coupling elements for the shear wall. The contribution of slabs and residual wall to the lateral load resisting system was investigated via an empirical test and finite element analysis. During the experiment, a U-shaped critical section of coupling slab was observed and its effective width and the total length of the critical section examined. The critical section of coupling slab that functions as a coupling element for shear wall varied marginally from the results of previous studies. The results of the analysis conducted show that slabs and residual walls contribute approximately 30% to the lateral load resisting system.


Mohammad Hadi Ranginkaman, Ali Haghighi, Hossein Mohammad Vali Samani,
Volume 15, Issue 4 (6-2017)
Abstract

This paper investigates the frequency response method for waterhammer phenomenon in piping networks. The unsteady flow governing equations are solved in time domain using the method of characteristics. They are also solved in frequency domain using the transfer matrix method. For the pipe network under consideration, critical transient excitation scenarios are identified. For each scenario, the frequency responses of the system as well as the time history of the transient pressures at the network nodes are calculated. The model is applied against a real pipe network and the results of the transfer matrix method are compared with those of the method of characteristics. It is concluded that the frequency response method not only presents a very fast algorithm for analyzing pipe systems but also, has an acceptable accuracy compared to the method of characteristics. The frequency response method requires linearization in some terms of the governing equations. Instead of that, it needs no computational discretization and interpolation necessary in time-space domains when using the method of characteristics.


Madhuri Damaraju, Dr Debraj Bhattacharyya, Kiran Kumar Kurilla,
Volume 15, Issue 4 (6-2017)
Abstract

Manufacturing industries synthesize new chemical products every day, which eventually find their ways into domestic and industrial wastewaters. As a result, wastewater is becoming increasingly more complex in nature. The emerging pollutants escape the treatment systems and appear in the receiving water bodies. Wastewater treatment plants in India still report effluent parameters in terms of BOD and COD at ppm level, whereas these emerging pollutants, many of whom are non-biodegradable, can be toxic and carcinogenic at ppb level. Therefore, it is imperative to look for alternatives or upgrade the existing systems which safely remove these harmful compounds from wastewater. In this research, efficiency of electrocoagulation process was assessed in a laboratory-scale setup in removing recalcitrant carbon from a real wastewater. The wastewater was collected from an effluent treatment plant that receives domestic wastewater and industrial effluents from chemical, bulk drugs and allied industries, for treatment. In this study the wastewater sample was analysed for total dissolved solids (TDS) and total organic carbon (TOC), and then treated biologically in a respirometer using aerobic microorganisms. After the oxygen uptake curve plateaued, indicating a cessation of biological process, the sample was analysed for TDS and TOC and put in a lab-scale electrocoagulation setup. Iron and Aluminium electrodes were used in the study and efficiency of the system in removing the recalcitrant / residual carbon and TDS was studied with respect to the reaction time. The results showed that electrocoagulation can be a potential post-biological treatment system for removal of recalcitrant carbon from wastewaters.


Chayanon Hansapinyo,
Volume 15, Issue 4 (6-2017)
Abstract

This paper presents an evaluation on lateral cyclic behaviors of precast concrete columns using a steel box connection through experimental investigation. The test consisted of one monolithic reinforced concrete column as a reference and five precast concrete columns. All specimens had identical dimensions of 0.25 x 0.25 m2 cross sectional area and 1.7 m in height with a longitudinal reinforcement ratio of 0.0152. Materials used for all specimens were also from the same batch. The study was aimed at understanding the design concept of the steel connecting box and detailing of column reinforcement for avoiding the brittle failure of precast concrete frame buildings. The experimental results show that without premature failure in welding or nut slipping, depending largely on the reinforcement details, the precast system with a steel box connection can be effectively used. Flexural failure mode with a ductile mechanism can be achieved to resemble the monolithic one. With a higher relative stiffness and capacities of the designed connecting box, the precast columns show a higher capacity as the failure section was shifted to an upper level. Hence, it can be said that the proper details of precast concrete columns contain acceptable seismic performances e.g. ultimate capacity, stiffness, energy dissipation, and capacity degradation under repeated loading.



Page 25 from 27     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb