Search published articles


Showing 10 results for Ann

H. Behbahani, S.m. Elahi,
Volume 4, Issue 1 (3-2006)
Abstract

To properly plan for construction, repair, maintenance, and reconstruction of highways the minimum acceptable roadway condition is needed information. This, along with other pavement management tools, will help select the most desirable roadway alternatives. In this research the minimum acceptable conditions are developed based on an opinion survey of non-technical but high-level decision makers. Roadway roughness, expressed as international roughness index (IRI), is used as the measurement criteria. Because IRI is a widely known, acceptable, and a uniformly measurable index, it is used for the purpose of this research. The minimum IRI values developed here will help managers, planners, and engineers in prioritizing their plans and projects. Iran has a central planning system, hence having a minimum acceptable IRI will help in producing homogeneity in decision making. A questionnaire is sent to top level and influential managementlevel officials who have a decisive input in highway matters. The officials are asked to choose the minimum acceptable service level of different types of roadways and classifications. Naturally, roadways with higher levels of importance would require higher service levels. The answers to the survey questionnaires are investigated to determine a preferred minimum acceptable roadway condition. The IRI is computed using a mechanical device enabling a more uniform data collection. The IRI was first proposed by The World Bank as a standard roughness statistic. Extensive research has proven that the IRI can be related to pavement condition. The result of the opinion survey is investigated to determine the minimum levels acceptable for each category. The responses show distinct preference patterns for most of the roadway types. Survey results are investigated by plotting and analyzing them. Based on road user’s perception of roadway condition using guidelines from AASHTO, the Corp of Engineers, and related research work. The appropriate IRI limits and ranges are determined for Iran’s highways. These values are adjusted to obtain final values for Iran. The result, shown in a table, gives upper and lower IRI values accepted and recommended for Iran’s highways. The result of this research work is specifically useful in developing specifications for new pavement design, accepting new pavement from contractors, pavement management, highway planning, and in roadway life cycle cost analysis decision making. The results are subject to refinement over time.
A. Yeganeh Bakhtiary, A. Ghaheri, R. Valipour,
Volume 5, Issue 1 (3-2007)
Abstract

Determination of allowable free span length plays a crucial role in design of offshore pipelines. The seabed intervention cost and safety of an offshore pipelines project are largely influenced by pipelines free spanning during the project life time. Different criteria are proposed by both the current designing guidelines and researchers there is however lack of comprehensive assessment of independent parameters affects the design length of free span. In this note, it is intended to investigate the effects of seabed formation along with axial force on Natural Frequency of offshore pipelines. Based on this assessment a new simple formula is proposed. Finally, to evaluate the result of this study, the allowable free span length of Qeshem Island pipelines is calculated as a case study and compared with those of the DNV (1998) and ABS (2001) guidelines and the modal analysis.
Sh. Afandizadeh, S.a.h Zahabi, N. Kalantari,
Volume 8, Issue 1 (3-2010)
Abstract

Logit models are one of the most important discrete choice models and they play an important role in

describing decision makers’ choices among alternatives. In this paper the Multi-Nominal Logit models has been used

in mode choice modeling of Isfahan. Despite the availability of different mathematical computer programs there are

not so many programs available for estimating discrete choice models. Most of these programs use optimization

methods that may fail to optimize these models properly. Even when they do converge, there is no assurance that they

have found the global optimum, and it just might be a good approximation of the global minimum. In this research a

heuristic optimization algorithm, simulated annealing (S.A), has been tested for estimating the parameters of a Logit

model for a mode choice problem that had 17 parameters for the city of Isfahan and has been compared with the same

model calculated using GAUSS that uses common and conventional algorithms. Simulated annealing is and algorithm

capable of finding the global optimum and also it’s less likely to fail on difficult functions because it is a very robust

algorithm and by writing the computer program in MATLAB the estimation time has been decreased significantly. In

this paper, this problem has been briefly discussed and a new approach based on the simulated annealing algorithm

to solve that is discussed and also a new path for using this technique for estimating Nested Logit models is opened

for future research by the authors. For showing the advantages of this method over other methods explained above a

case study on the mode choice of Isfahan has been done.


M. Karamouz, M. Fallahi, S. Nazif, M. Rahimi Farahani,
Volume 10, Issue 4 (12-2012)
Abstract

Runoff simulation is a vital issue in water resource planning and management. Various models with different levels of accuracy

and precision are developed for this purpose considering various prediction time scales. In this paper, two models of IHACRES

(Identification of unit Hydrographs And Component flows from Rainfall, Evaporation and Streamflow data) and ANN (Artificial

Neural Network) models are developed and compared for long term runoff simulation in the south eastern part of Iran. These

models have been utilized to simulate5-month runoff in the wet period of December-April. In IHACRES application, first the

rainfall is predicted using climatic signals and then transformed to runoff. For this purpose, the daily precipitation is downscaled

by two models of SDSM (Statistical Downscaling Model) and LARS-WG (Long Ashton Research Station-Weather Generator). The

best results of these models are selected as IHACRES model input for simulating of runoff. In application of the ANN model,

effective large scale signals of SLP(Sea Level Pressure), SST(Sea Surface Temperature), DSLP and runoff are considered as model

inputs for the study region. The performances of the considered models in real time planning of water resources is evaluated by

comparing simulated runoff with observed data and through SWSI(Surface Water Scarcity Index) drought index calculation.

According to the results, the IHACRES model outperformed ANN in simulating runoff in the study area, and its results are more

likely to be comparable with the observed values and therefore, could be employed with more certainty.


M. R. Kavianpour, E. Rajabi,
Volume 10, Issue 4 (12-2012)
Abstract

The objective of this work is to perform a direct numerical simulation of turbulent channel flow where all essential scales of

motion are resolved due to variable time-stepping algorithm in various time advancement method and different discritized form

of convection term. A pseudo spectral method (Fourier series in stream-wise and span-wise directions and Chebychev polynomial

expansion in normal direction) is employed for the spatial derivatives. The time advancement is carried out by different semiimplicit

and splitting schemes. Also Alternating and Linearized forms are added to four commonly used forms of the convective

term, referred to as divergence, Convection, skew-symmetric, and rotational. Spectral method based on the primitive variable

formulation is used in Cartesian coordinates with two periodic and one non-periodic boundary condition in three dimensional

directions &Omega=[0,4&pi]×[-1,1]×[0,2&pi]. The friction Reynolds number for channel flow is set to be Re&tau=175 and the computational

grids of 128×65×128 are used in the x, y and z directions, respectively. The comparison is made between turbulent quantities

such as the turbulent statistics, wall shear velocity, standard deviation of u and total normalized energy of instantaneous velocities

in different time-discretization methods and different forms of nonlinear term. The present results show that third-order timediscretizations

forward Euler for explicit terms and backward Euler for implicit terms can minimize the computational cost of

integration by maximizing the time step, while keeping the CFL number near a threshold in time-discretization schemes. Also, the

de-aliased results of turbulence statistics do indicate that different expressions of nonlinear terms have minor discrepancy in

pseudo spectral method. The results show that the most desirable approach is a combination of variable time stepping third order

backward difference algorithm and rotational form, which provides reduced cost and further accuracy improvements.


A. Ghare, A. Badar,
Volume 12, Issue 4 (12-2014)
Abstract

The objective of field water measurement is to conserve water by improving management of its distribution and field application. A simple mobile flume to measure a discharge through small rectangular open channels in agricultural fields has been experimentally investigated. The flume consisting of a vertical cylinder inserted axially into the horizontal prismatic rectangular channel, referred as a simple cylindrical flume, has been calibrated. The flow rate in rectangular channel can be measured by constricting the flow due to presence of cylinder, resulting in critical flow conditions. Experiments have been performed on two simple cylindrical flumes of different diameters, to evaluate the hydraulic characteristics of subcritical incoming flow under free flow conditions. The results of laboratory experiments on the flume have been analysed and two different discharge prediction models have been developed. The two models developed for the prediction of discharge for simple cylindrical flumes developed for use in rectangular channel sections, are based on the energy concept and the direct regression approach, respectively. Both the proposed models have been validated using the limited experimental data available in the literature. Formation of critical depth at the throat section has also been verified. Plots have also been developed for the dimensionless column head and the corresponding Froude number of the incoming flow. The discharge prediction model giving the least error has been proposed for use in practice.
Mohammad Tamannaei, Mahmoud Saffarzadeh, Amin Jamili, Seyedehsan Seyedabrishami,
Volume 14, Issue 3 (4-2016)
Abstract

This paper presents a novel approach to solve the double-track railway rescheduling problem, when an incident occurs into one of the block sections of the railway. The approach restricts the effects of an incident to a specific time, based on which the trains are divided into rescheduled and unchanged ones, so that the latter retain their original time-table after the incident. The main contribution of this approach is the simultaneous consideration of three rescheduling policies: cancelling, delaying and re-ordering. A mixed-integer optimization model is developed to find optimal conflict-free time-table compatible with the proposed approach. The objective function minimizes two cost parts: the cost of deviation from the primary time-table and the cost of train cancellation. The model is solved by CPLEX 11 software which automatically generates the optimal solution of a problem. Also, a meta-heuristic solution method based on simulated annealing algorithm is proposed for tackling the large-scale problems. The results of an experimental analysis on two double-track railways of the Iranian network show an appropriate capability of the model and solution method for handling the simultaneous train rescheduling. The results indicate that the proposed solution method can provide good solutions in much shorter time, compared with the time taken to solve the mathematical model by CPLEX software.


Ramos-Alcazar Luis, Marchamalo-Sacristan Miguel, Martinez-Marin Ruben,
Volume 15, Issue 2 (3-2017)
Abstract

This article presents a new approach to obtain a complete map-type plot of the precisions of TLS equipment based on the direct measurement of time of flight method at midrange distances. Tests were developed in field-like conditions, similar to dam monitoring and other civil engineering works. Taking advantage of graphic semiological techniques, a map in “distance - angle of incidence” coordinates was designed and evaluated for field-like conditions. A map-type plot was designed combining isolines and sized and colored points, proportional to precision values. Precisions under different field conditions were compared with specifications. For this purpose, processed point clouds were evaluated under two approaches: classical "plane-of-best-fit" and proposed "simulated deformation”, that showed improved performance. These results lead to a discussion and recommendations about optimal TLS operation in civil engineering works.


Sohrab Karimi, Hossein Bonakdari, Azadeh Gholami, Amir Hossein Zaji,
Volume 15, Issue 2 (3-2017)
Abstract

Dividing open channels are varied types of open channel structures used to provide water for irrigation channels, agriculture and wastewater networks. In the present study the mean velocity is calculated in different dividing angles within the branches channel through the use of artificial Neural Network (ANN) and coputational fluid dynamices (CFD) models. First the ANSYS-CFX model is used to simulate the flow pattern within the branch with a 90° angle. The results of the CFX model correspond fairly well to the results of the experimental model with Mean Absolute Percentage Error (MAPE) of 5%. After verifying, two CFX model are generated in 30° and 60° angle in different width ratios of 0.6, 0.8, 1, 1.2, and 1.4, and the mean velocities are obtained by flowmeter. Following that ANN model trained and tested through the use of a set of experimental and CFX datas. The comparison showed that the ANN model has an acceptable level of accuracy in predicting the dividing open channel mean flow velocity with mean value R2 of 0.93. Comparing the results indicated that ANN model with the MAPE of 1.8% performs better in 0.8 m width ratio. Also, in this width ratio the MAPE are equal to 1.58, 1.87, and 2.04 % in 30°, 60°, and 90° deviation angles respectively and therefore the model performs better in 30° angle.


Slawomir Biruk, Piotr Jaskowski,
Volume 15, Issue 2 (3-2017)
Abstract

A formwork is a structure used to contain poured concrete and to mold it to the required dimensions. Different formwork systems provide a wide range of concrete construction solutions that can be chosen to suit the needs of a particular structure. The selection of panels and the design of the formwork layout for concrete structures, especially if the panels are to be reused many times to form different work zones, is one of the most complex tasks in formwork construction. It influences the quality of work, construction time, site safety and cost. The formwork costs account for a significant part of the total costs for concrete works. The problem of the selection and layout of reusable panel forms is solved mainly based on the intuitive judgment of experienced engineers in collaboration with the form system supplier. This study proposes a mixed integer linear programming modeling approach to support the formwork planning process. The problem consists in determining the number and sizes of the panels according to the geometry of the concrete elements in order to minimize the rental cost of wall shuttering in a building divided into work zones that are to be completed in sequence, reusing the chosen panels. The model can be solved using typical software dedicated to mixed integer linear programs. A simple example is used to illustrate the efficiency of the proposed approach, where the formwork rental costs is 7.31% lower than the rental costs of panels and corners optimized without consideration of the reuse in consecutive zones.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb