Search published articles


Showing 4 results for Clayey Soil

H. Soltani-Jigheh, A. Soroush,
Volume 4, Issue 3 (9-2006)
Abstract

This paper presents the results of a series of monotonic and post-cyclic triaxial tests carried out on a clay specimen and three types of clay-sand mixed specimens. The focus of the paper is on the post-cyclic mechanical behavior of the mixed specimens, as compared to their monotonic behavior. Analyses of the tests results show that cyclic loading degrade undrained shear strength and deformation modulus of the specimens during the post-cyclic monotonic loading. The degradation depends on the sand content, the cyclic strain level and to some degrees to the consolidation pressure.
H. Soltani-Jigheh, A. Soroush,
Volume 8, Issue 2 (6-2010)
Abstract

Mixed clayey soils occur as mixtures of sand (or gravel) and clay in widely varying proportions. Their

engineering behavior has not been comprehensively studied yet. An experimental program, comprising monotonic,

cyclic, and post-cyclic triaxial tests was undertaken on compacted clay-granular material mixtures, having different

proportions of clay and sand or gravel. This paper presents the results of cyclic triaxial tests and explains the behavior

of the mixtures based on number of loading cycles, cyclic strain amplitude, granular material content, grain size, and

effective confining pressure. The results indicate an increase in degree of degradation and cyclic loading-induced pore

water pressure as the number of loading cycles, cyclic strain and granular material content increase. Also the results

show that the grain size has no significant effect on the degree of degradation and cyclic loading-induced pore water

pressure in the specimens. The effect of granular material content on pore water pressure during cyclic loading in

equal-stress-level was also examined. The pore water pressure increases with the increase of granular material

content.


M. A. Khan,
Volume 11, Issue 1 (5-2013)
Abstract

Owing to the proximity of certain locations to the thermal power stations, it has always been efforts of Engineers to enhance

the flyash utilization rate in various Civil Engineering Constructions adopting suitable strategies. In the present study, a soilflyash

interface mechanism has been evolved using different soil-flyash ratios to upgrade significantly stabilization of supporting

medium based on CBR tests. The study confirms soundness of approach when a particular interface arrangement gives high

flyash utilization rate along with many fold increase CBR values. A study was carried out to investigate the interface effect of

soil-flyash layered system in terms of CBR values so that an optimum arrangement can be achieved by using flyash in

combination with soil. In this study, 18 samples of different ratios of soil and flyash (1:0.5, 1:1, 1:1.5, 1:2, 1:2.5, 1:3) with three

sets of interfaces N = 2, 4 and 6 were tested to arrive at the most optimized combination of soil and flyash. The results indicate

that the CBR value optimized at soil-flyash ratio 1:2.5 and number of interface N = 4. The present study reveals that soil with

flyash when used in layered system with various numbers of interfaces gives considerable improvement in CBR values. In the

above arrangement about 71 % of flyash and 29 % of soil thus contributing significantly in utilization of flyash in subgrade of

flexible pavements. In the overall study, three equations for number of interfaces N = 2, 4 and 6 have also been developed in

terms of soil-flyash ratio and CBR value, so that CBR value can directly be obtained by substituting the value of soil-flyash ratio

at a particular number of interfaces.


Hossein Soltani-Jigheh,
Volume 14, Issue 7 (10-2016)
Abstract

The main objective of present study is to possible use of plastic waste materials for reinforcing clayey soils. An experimental study was planned to investigate compressibility and undrained shear behavior of clayey soil mixed with plastic waste. The mixtures were prepared with various amount of plastic waste (i.e. 0%, 0. 5%, 1.0%, 1.5% and 3.0% in dry weight) and interactive effect of plastic waste, plastic flexibility, confining pressure and initial density on the behavior of clayey soil was studied by performing compaction, consolidated undrained triaxial and oedometer consolidation test. The results show that plastic wastes do not affect compaction characteristics of clayey soil considerably and adding them to the clay more than a specific value (i.e. 1.0% in this research) causes to change undrained behavior of samples from contractive to dilative. In addition, beyond this specific value, it improves shear strength and reduces compressibility of clay. The rate of increase in shear strength and decrease in compressibility depends on the confining pressure, flexibility of plastic and initial density of samples. It is more noticeable when plastic waste in mixtures is relatively rigid and density and confining pressure are high. Moreover, plastic waste has a negative effect on the free swelling, swelling pressure and swelling index of samples, so that these parameters for plastic waste mixed clay are higher than the associated values of plain clay.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb