Search published articles


Showing 2 results for Concrete Bridge

M. Saiidi, C. Cruz, D. Hillis,
Volume 8, Issue 1 (3-2010)
Abstract

Three unconventional details for plastic hinges of bridge columns subjected to seismic loads were developed,

designed, and implemented in a large-scale, four-span reinforced concrete bridge. Shape memory alloys (SMA),

special engineered cementitious composites (ECC), elastomeric pads embedded into columns, and post-tensioning

were used in three different piers. The bridge model was subjected to two-horizontal components of simulated

earthquake records of the 1994 Northridge earthquake in California. The multiple shake table system at the University

of Nevada, Reno was used for testing. Over 300 channels of data were collected. Test results showed the effectiveness

of post-tensioning and the innovative materials in reducing damage and permanent displacements. The damage was

minimal in plastic hinges with SMA/ECC and those with built in elastomeric pads. Conventional reinforced concrete

plastic hinges were severely damaged due to spalling of concrete and rupture of the longitudinal and transverse

reinforcement. Analytical studies showed close correlation between the results from the OpenSEES model and the

measured data for moderate and strong earthquakes.


Mahnoosh Biglari, Iman Ashayeri, Mohammad Bahirai,
Volume 14, Issue 6 (9-2016)
Abstract

In this article, general procedures for vulnerability assessment and retrofitting of a generic seismically designed bridge are outlined and the bridge’s damage criteria for blast resistance are explained. The generic concrete bridge is modeled and analyzed with the finite element technique implemented in ANSYS LS-DYNA environment and explosion threats are categorized into three main levels. Uncoupled dynamic technique is adopted to apply the blast loads on the bridge structure, damage and performance levels are resulted based on quantitatively verified damage mechanisms for the bridge members. The results show that, amongst different loading scenarios, the explosions that happen under deck are more critical comparing to blasts initiating from over deck sources. Furthermore, two retrofitting methods 1) concrete filled steel tube (CFST) and 2) concrete jacket are applied on the bridge columns. The program AUTODYN is used with coupled dynamic analysis of a column to compare the effectiveness of each method. Afterward, more efficient method for a column is applied to the whole bridge and its efficiency is revaluated. It is shown that CFST can decrease concrete spall, scabbing, rotation, displacements and shear forces more than the concrete jacket. Considering the proposed damage and performance levels, the bridge retrofitted with CFST reacts with lower damage level and higher performance level to blast loads.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb