Search published articles


Showing 6 results for Dynamic Analysis

F.r. Rofooei, M. R. Mirjalili, N. K. A. Attari,
Volume 10, Issue 4 (12-2012)
Abstract

The nonlinear static procedures (NSPs) proposed by design codes do not lead to reliable results especially for tall buildings.

They generally provide inconsistent estimates of inelastic seismic demands, especially for the top floors due to their inabilities in

considering the higher modes effects. In this paper, a new enhanced pushover procedure is proposed which is based on the

envelope of the structural responses resulting from two separate pushover analyses as a combination rule. Also, the suggested

pushover analyses are performed using a newly proposed modal load pattern, i.e., the Modal Spectra Combination (MSC), and

the ASCE41-06 required first mode load pattern. The MSC load pattern is consisted of a number of mode shapes combined with

appropriate weighting factors that depend on their modal participation factors, modal frequencies and design spectral values. A

number of 2-D steel moment resisting frame models with different number of stories are used to investigate the efficiency of the

proposed method. The inter-story drifts and the maximum plastic beam moment and curvature responses are used as a measure

to compare the results obtained from the nonlinear time-history analyses (NL-THA) and some other NSPs. The results obtained

through rigorous nonlinear dynamic analyses show that the application of the proposed method leads to acceptable results for

steel MRF systems in comparison to other available enhanced NSPs. The OpenSees program is used for numerical analysis.


A. Gholizad, P. Kamrani Moghaddam,
Volume 12, Issue 1 (3-2014)
Abstract

High performance and reliability of refurbish able knee braced steel frames has been confirmed in previous researches trying to get an optimal design for its configuration. Buckling of diagonal member which affects the hysteretic behavior of KBF under cyclic loadings has not been foreseen in previous evaluations of this system. This deficiency can be improved by utilization of adjustable rotary friction damper device (FDD) as knee element. Diagonal element buckling can be prevented considering a suitable value for FDD sliding threshold moment Mf. Lower values of Mf Lower energy dissipation rate in FDD and this leads to an optimization problem. Nonlinear time history analyses have been performed in addition to lateral cyclic loading analyses to evaluate the response of single story KBF subjected to seismic excitation. Optimal Mf in FDD has been chosen according to these analyses results. Roof displacement and acceleration, base shear and diagonal element’s buckling status have been compared in optimally designed KBF and FDD utilized KBF (FKBF) with different configurations. Nonlinear dynamic analyses have been performed for one, four, eight and twelve story frames under different seismic records with several PGAs. More than 60% displacement response reduction has been earned for the FKBF without considerable increase in base shear.
M. Mahmoudi, T. Teimoori, H. Kozani,
Volume 13, Issue 4 (12-2015)
Abstract

The current building codes provide limited prescriptive guidance on design for protection of buildings due to progressive collapse. Progressive collapse is a situation in which a localized failure in a structure, caused by an abnormal load, such as explosions or other happenings. Three procedures, often employed for determination of the structural response during progressive collapse i.e. linear static procedure (LSP), nonlinear static (NSP) and nonlinear dynamic (NDP) analyses. In nonlinear static analysis, a force-based method is applied and the structure is pushed down to the target force. In this research, a new displacement-based method will be proposed for nonlinear static analysis. In displacement-based method, the structure is pushed down to target displacement instead of target force (similar to the one in seismic pushover analysis). To make a nonlinear static analysis, instead of increasing the load around the area of the removed column, a maximum displacement is calculated and the upper node of the removed column is pushed up to target displacement. Here, to determine the target displacement, results from nonlinear dynamic and linear static analyses are compared. This paper tries to present a formula to calculate the target displacement using the linear static rather than the nonlinear dynamic analysis. For this reason, 3 buildings with 3, 5 and 10 stories have been seismically designed and studied. The results show that, this method is much more accurate in comparison to the recommended approach in current codes. Also, this method does not have the limitations of force-based nonlinear static analysis.


Mahnoosh Biglari, Iman Ashayeri, Mohammad Bahirai,
Volume 14, Issue 6 (9-2016)
Abstract

In this article, general procedures for vulnerability assessment and retrofitting of a generic seismically designed bridge are outlined and the bridge’s damage criteria for blast resistance are explained. The generic concrete bridge is modeled and analyzed with the finite element technique implemented in ANSYS LS-DYNA environment and explosion threats are categorized into three main levels. Uncoupled dynamic technique is adopted to apply the blast loads on the bridge structure, damage and performance levels are resulted based on quantitatively verified damage mechanisms for the bridge members. The results show that, amongst different loading scenarios, the explosions that happen under deck are more critical comparing to blasts initiating from over deck sources. Furthermore, two retrofitting methods 1) concrete filled steel tube (CFST) and 2) concrete jacket are applied on the bridge columns. The program AUTODYN is used with coupled dynamic analysis of a column to compare the effectiveness of each method. Afterward, more efficient method for a column is applied to the whole bridge and its efficiency is revaluated. It is shown that CFST can decrease concrete spall, scabbing, rotation, displacements and shear forces more than the concrete jacket. Considering the proposed damage and performance levels, the bridge retrofitted with CFST reacts with lower damage level and higher performance level to blast loads.



Volume 15, Issue 4 (6-2017)
Abstract

Bridges normally undergo nonlinear deformations during a near field strong ground motion resulting in a critical deviation of their columns from the plumb state due to considerable residual deformations. These excessive residual deformations make a bridge, which has not collapsed, ‘irreparable’ and in turn ‘not operable.’ Therefore, reasonable prediction of these types of bridge piers deformations is of great importance in order to evaluate the serviceability of bridges subjected to a seismic scenario. Conventional hysteresis models formulated for typical concrete columns are normally used for this purpose which most of times fail to correctly predict the residual deformations occurred as a result of a one-sided or directivity pulse excitation. The present research aims at development of a peak oriented hysteresis model being able to regenerate residual deformations more reasonable compared to the conventional hysteresis models. This multi linear peak oriented model considers strength deterioration in each half cycle in addition to stiffness degradations in unloading cycles. Yielding points differ in both positive and negative sides of the hysteresis model that enables us to define a different elastic stiffness of both sides in asymmetric concrete sections. Another remarkable property of this model is breaking points and strength deterioration in unloading and reloading stages. This work also compares the obtained results to the conventional hysteresis models, namely bilinear, Clough, Q-Hyst, Takeda and Bouc-Wen in terms of prediction of residual nonlinear deformations in cyclic or dynamic analysis of reinforced concrete single-column bridge piers. The obtained results prove higher relative accuracy of the proposed model.


Farshad Homaei, Hamzeh Shakib, Masoud Soltani,
Volume 15, Issue 4 (6-2017)
Abstract

In this paper, the probabilistic seismic performance of vertically irregular steel buildings, considering soil-structure interaction effects, is evaluated. Various irregular distributions of structural properties, including mass, stiffness and strength along the height of three-dimensional moment resisting steel frames were intended. The finite element model of soil medium was created with solid elements below the structure. The nonlinear material behavior of soil was considered as well. Nonlinear incremental dynamic analysis was performed to evaluate the flexible-base structural performance in the framework of probabilistic performance-based earthquake engineering. According to the median curves of intensity-demand of structures, it is concluded that non-uniform height-wise distribution of lateral resistance properties of steel structures varies the displacement demand and the seismic capacity of the irregular frames, compare to the regular structure. The capacity variation of most irregular frames is more obvious at the nonlinear phase of structural behavior. Due to the foundation flexibility, the damage concentration raises in the bottom floor and the irregularity increase the seismic demands of the lower floors of the system. Among all the irregular steel frames, the average increase of the displacement demand and reduction of the seismic capacity are maximal for the strength and concurrent variation of stiffness and strength irregularity models, respectively. Additionally, mass irregularity shows minor influence in the seismic demand and capacity variations of the steel frames. The predominant influence of stiffness and strength irregularities (soft and weak story) is observed in reduction of the structural ductility factor and the mean annual frequency of exceeding limit states.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb