Search published articles


Showing 3 results for Engineering Design

I. Yitmen,
Volume 10, Issue 4 (12-2012)
Abstract

Learning rapidly and competently has become a pre-eminent strategy for improving organizational performance in the

new knowledge era. Improving dynamic learning capability is an exclusive strategy for corporate success in construction

industry. Thus engineering design firms should implement OL to accomplish a state of readiness for change and develop a

competence to respond and identify future business potentials. This study aims to analyze the relationship between

organizational learning (OL) and performance improvement (PI) in civil engineering design firms of Turkish construction

industry. OL structure in engineering design firms incorporates five constructs: organizational environment, strategy

development and implementation, supportive leadership, leveraging knowledge, and learning capability. The empirical data

was collected through a questionnaire survey conducted to engineering design firms registered to the Turkish Chamber of Civil

Engineers. The hypothesized model relationships were tested using Structural Equation Modeling (SEM). The results show that

each of the variables has a different role and significant positive impact on the OL process and organizational PI. The variables

“Supportive leadership” and “Learning capability” proved to be strongly significant and positively related to organizational

performance in engineering design firms. In engineering design firms, supportive leadership is needed in order to establish a

participative cultural environment that helps design a new form of organization which emphasizes learning, flexibility, and

rapid response. Learning capability is the potential to explore and exploit knowledge through learning flows that make possible

the development, evolution and use of knowledge stocks enacting engineering design firms and their members to add value to

the design business.


Ilker Erkan, Hasan Hastemoglu,
Volume 14, Issue 8 (12-2016)
Abstract

In this study, the usage of the Level of Service (LOS) concept, which was developed specifically for pedestrian satisfaction and safety, was critically analyzed. The focuses of this investigation were the Fruin and Highway Capacity Manual (HCM) LOS values, which were evaluated and compared in terms of their anthropometric dimensions. In this paper, new LOS values are proposed on the basis of the critical evaluation of the HCM and Fruin LOS values revealing the inconsistencies between the LOS values and the analysis. The importance of emptiness area in calculating human comfort and satisfaction in terms of the anthropometric dimensions and LOS value is also discussed. A software program called Laborer Image Analysis Software (LIAS) was developed to evaluate and compare the impacts of different body dimensions on the LOS values and on the space requirements for pedestrians. LIAS is presented as a facilitation tool for calculating more concise and effective emptiness areas and LOS values. The comfort area concept is also presented and discussed. This discussion is used to reveal the contrasts and inconsistencies in the existing usage of the LOS concept and to highlight the importance of the emptiness area approach. The paper presents a different perspective and discussion on the existing utilization of LOS levels, particularly for pedestrians in different structures. The research contributes to the LOS analysis discussion in terms of the anthropometric scale according to changing user profiles and develops facilitator(s) for analyzing and applying amendments to pedestrian needs, which can be used in transportation buildings.


Mohammadreza Sheidaii, Mehdi Babaei,
Volume 15, Issue 2 (3-2017)
Abstract

Engineering design usually requires considering multiple variances in a design and integrating them appropriately in order to achieve the most desirable alternative. This consideration takes particular importance in the constructional projects of civil engineering. However, frequently, the structural designer’s considerations in civil engineering teams contrast the stylish and creative novelties of architectures. Then, we should take up new methodologies to yield appropriate alternatives which meet artistic aspects of design and simultaneously satisfy the structural designer’s demands. Consequently, the process of design should incorporate the multi-fold aspects of engineer’s requirements and their personal preference. So, in this study, we preset a systematic approach, so-called desirability based design, to perform a directed multi-objective optimal design considering various aspects of a design, based on soft-computing methods. Fuzzy logic integrated with genetic algorithm is employed to build a decision-making fuzzy system based on expert knowledge. It will be employed to conduct the designing process. Illustrative examples show practicality and efficiency of the presented methodology in structural design of several space structures.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb