Search published articles


Showing 2 results for Finite Volume Method

Saeed Reza Sabbaghyazdi1, Tayebeh Amiri Saadatabadi,
Volume 9, Issue 3 (9-2011)
Abstract

In this research, a novel numerical algorithm is introduced for computation of temperature-induced before crack steady strainstress field in plane-stress problem. For this purpose, two dimensional heat transfer equation and force equilibrium equations are sequentially solved using Galerkin Finite Volume method on identical unstructured triangular meshes when proper convergence for each field is achieved. In this model, a proper thermal boundary condition that is suitable for unstructured triangular meshes is introduced for analysis. Two test cases are used to assess accuracy of thermal and structural modules of the developed solver and the computed results are compared with theirs analytical solution.First, thermal analysis is performed for a rectangular plate which is connected to a supporting body with constant temperature and expose to surrounding liquid at three edges.Second, structural analysis is performed for a plate under distributed loads in two directions. Having obtained acceptable results from thermal and structural modules, thermal stress analysis is performed for a plate with fixed-end condition at one of edges,due to a uniform temperature field and the computational principle stress contours are compared with the Finite Element method results which have been reported in the literatures.


E. Alamatian, M. R. Jaefarzadeh,
Volume 10, Issue 1 (3-2012)
Abstract

In this article, the two-dimensional depth-averaged Saint Venant equations, including the turbulence terms, are solved in a

supercritical flow with oblique standing waves. The algorithm applies the finite volume Roe-TVD method with unstructured

triangular cells. Three depth-averaged turbulence models, including the mixing length, k-&epsilon and algebraic stress model (ASM),

are used to close the hydrodynamic equations. The supercritical flow in a channel downstream from a side-baffle in plan is then

simulated, and the numerical results are compared with the data obtained from a laboratory model. The application of different

models demonstrates that the consideration of turbulence models improves the results at the shock wave positions. The qualitative

study of the results and error analysis indicates that the ASM offers the most desirable solutions in comparison with the other

models. However, our numerical experiments show that, amongst the source term components, the negligence of turbulence terms

produces the least error in the depth estimation in comparison with the removal of the bed slope or bed friction terms.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb