Search published articles


Showing 1 results for Fluid Particle Interaction

Y. L. Luo,
Volume 11, Issue 1 (5-2013)
Abstract

The occurrence of piping failures in earth structures demonstrates the urgency and importance of studying piping. With this

intention, a new piping model was developed in the framework of continuum mixture theory. Assuming that porous media are

comprised of solid skeleton phase, fluid phase and fluidized fine particles phase, the fluidized fine particles phase is considered

to be a special solute migrating with the fluid phase. The three phases interact while being constrained by the mass conservation

equations of the three phases, and a sink term was introduced into the mass conservation equation of the solid skeleton phase to

describe the erosion of fluidized fine particles, then a new continuum fluid-particle coupled piping model was established and

validated. The validation indicates that the proposed model can predict the piping development of complicated structures under

complex boundary and flow conditions, and reflect the dynamic changes of porosity, permeability and pore pressure in the

evolution of piping.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb