Search published articles


Showing 15 results for Foundation

M.h. Baziar, A. Ghorbani, R. Katzenbach,
Volume 7, Issue 3 (9-2009)
Abstract

The pile-raft foundation is a combination of a raft foundation with piles. Pile-raft foundation has been widely designed, assuming all structure loads to be transferred to piles without considering contribution of the load taken by contact surface between raft and soil. Methods of analysis currently used in practice are based upon relatively conservative assumptions of soil behavior or on the less realistic soil-structure interaction. In this study the bearing -settlement behavior of combined pile-raft foundations on medium dense sand was investigated. 1g physical model test was performed on a circular rigid raft underpinned with four model piles. Numerical simulation was also carried out on the model test, using FLAC-3D, to show compatibility of the numerical analysis with the test. The obtained results showed very good accuracy of the numerical method used in this study as long as the applied load does not exceed the working load, while the performance of numerical model was relatively good for the loads beyond working load.
S.m. Moosavi, M.k. Jafari , M. Kamalian, A. Shafiee ,
Volume 8, Issue 2 (6-2010)
Abstract

Ground differential movements due to faulting have been observed to cause damage to engineered structures

and facilities. Although surface fault rupture is not a new problem, there are only a few building codes in the world

containing some type of provisions for reducing the risks. Fault setbacks or avoidance of construction in the proximity

to seismically active faults, are usually supposed as the first priority. In this paper, based on some 1-g physical

modelling tests, clear perspectives of surface fault rupture propagation and its interaction with shallow rigid

foundations are presented. It is observed that the surface fault rupture could be diverted by massive structures seated

on thick soil deposits. Where possible the fault has been deviated by the presence of the rigid foundation, which

remained undisturbed on the footwall. It is shown that the setback provision does not give generally enough assurance

that future faulting would not threaten the existing structures.


A. R. Majidi, A.a. Mirghasemi, M. Arabshahi,
Volume 9, Issue 4 (12-2011)
Abstract

In the current study, an effort is made to determine three dimensional bearing capacity of rectangular foundations using Discrete

Element Method. The soil mass is modeled as discrete blocks connected with Winkler springs. Different factors affect the geometry

of failure surface. Six independent angles are used to define the failure surface. By trial and error, the optimum shape of failure

surface beneath the foundation can be found. The paper includes the derivation of the governing equations for this DEM based

formulation in three dimensional state as well as parametric sensitivity analyses and comparison with other methods. Moreover,

using the current method, bearing capacity coefficients are presented for various friction angles and foundation aspect ratios.


M. Jahanandish, M. Veiskarami, A. Ghahramani,
Volume 9, Issue 4 (12-2011)
Abstract

Foundations behavior is affected by soil behavior which can vary from dilative to contractive depending on the stress level,

particularly in dense frictional soils. The Zero Extension Lines (ZEL) method has been generally developed to predict the

foundations behavior. Knowledge of soil behavior enables the ZEL method to predict the general and local shear failure modes.

In this paper, a relatively simple work hardening/softening soil constitutive model is developed to represent dense frictional soils

behavior under different stress levels. This model is based on the accumulation of the plastic work during a simple direct shear

test and its relationship to stress ratio to establish the hardening law. Verifications have been made for the developed soil model.

The model is then implemented into the ZEL method to theoretically investigate the bearing capacity and load-displacement

behavior of foundations over dense frictional soils. Utilization of this model enables the ZEL method to capture different modes

of failure depending on the foundation size. A numerical study on foundations behavior was performed showing the ability of the

presented approach in capturing both failure modes.


A. Eslami, M. Veiskarami, M. M. Eslami,
Volume 10, Issue 2 (6-2012)
Abstract

It has been realized that the raft (mat) foundations are capable of bearing very large loads when they are assisted with a pile
group. The contribution of both raft and piles to carry the surcharge loads is taken into account, considering the stiffness and
strength of involved elements in the system, i.e. piles, raft and surrounding soil. The piles are usually required not to ensure the
overall stability of the foundation but to act as settlement reducers. There is an alternative design in which, the piles are nonconnected
from the raft to reduce the settlement, which are then known to be "settlement reducer non-connected piles" to increase
the system stiffness. In this paper, two and three dimensional finite element analysis of connected and non-connected pile-raft
systems are performed on three case studies including a 12-storey residential building in Iran, a 39-storey twin towers in
Indonesia, and the Messeturm tower, 256m high, in Frankfurt, Germany. The analyses include the investigation of the effect of
different parameters, e.g. piles spacing, embedment length, piling configuration and raft thickness to optimize the design. The role
of each parameter is also investigated. The parametric study results and comparison to a few field measurements indicate that
by concentrating the piles in the central area of the raft foundation the optimum design with the minimum total length of piles is
achieved, which is considered as control parameter for optimum design. This can be considered as a criterion for project cost
efficiency. On the other hand, non-connected piled-raft systems can significantly reduce the settlements and raft internal bending
moments by increasing the subsoil stratum stiffness. Finally, the comparison indicates that simple and faster 2D analysis has
almost similar results to the time consuming and complicated 3D analysis.


H. Shahnazari, M. A. Shahin, M. A. Tutunchian,
Volume 12, Issue 1 (1-2014)
Abstract

Due to the heterogeneous nature of granular soils and the involvement of many effective parameters in the geotechnical behavior of soil-foundation systems, the accurate prediction of shallow foundation settlements on cohesionless soils is a complex engineering problem. In this study, three new evolutionary-based techniques, including evolutionary polynomial regression (EPR), classical genetic programming (GP), and gene expression programming (GEP), are utilized to obtain more accurate predictive settlement models. The models are developed using a large databank of standard penetration test (SPT)-based case histories. The values obtained from the new models are compared with those of the most precise models that have been previously proposed by researchers. The results show that the new EPR and GP-based models are able to predict the foundation settlement on cohesionless soils under the described conditions with R2 values higher than 87%. The artificial neural networks (ANNs) and genetic programming (GP)-based models obtained from the literature, have R2 values of about 85% and 83%, respectively which are higher than 80% for the GEP-based model. A subsequent comprehensive parametric study is further carried out to evaluate the sensitivity of the foundation settlement to the effective input parameters. The comparison results prove that the new EPR and GP-based models are the most accurate models. In this study, the feasibility of the EPR, GP and GEP approaches in finding solutions for highly nonlinear problems such as settlement of shallow foundations on granular soils is also clearly illustrated. The developed models are quite simple and straightforward and can be used reliably for routine design practice.
Amir Hossein Jafarieh, Mohammad Ali Ghannad,
Volume 12, Issue 2 (6-2014)
Abstract

It is well-known that the behavior of soil-structure systems can be well described using a limited number of non-dimensional parameters. This is the outcome of researches based on the premise that the foundation is bonded to the ground. Here, it is shown the concept can be extended to systems with foundation uplift. A set of non-dimensional parameters are introduced which controls the main features of uplifting systems. The effect of foundation uplift on response of soil-structure systems are investigated parametrically through time history analysis for a wide range of systems subjected to ground motions recorded on different soil types. In particular, the effects of uplift on displacement ratio, defined as the ratio of maximum displacement of the uplifting system to that of the elastic system without uplifting and drift ratio, defined as the ratio of maximum drift of the structure as a part of uplifting soil-structure system to that of the elastic system without uplifting, are investigated. It is observed that in general foundation uplift reduces the drift response of structures, which in turn, results in lower base shear. The reduction reaches about 35 percent for slender structures located on relatively soft soils subjected to strong ground motions. Simplified expressions are suggested to estimate this reduction in the base shear.
M. Zare, A. Eslami,
Volume 12, Issue 4 (12-2014)
Abstract

Physical modeling for study of deep foundations can be performed in simple chambers (1g), calibration chambers (CC),

and centrifuge apparatus (ng). These common apparatus face certain limitations and difficulties. Recently, Frustum Confining

Vessels (FCV) have been evolved for physical modeling of deep foundations and penetrometers. Shaped as the frustum of a

cone, this device applies steady pressure on its bottom and creates a linear stress distribution along its vertical central core.

This paper presents the key findings in FCV, as developed in AUT. The FCV has a height of 1200 mm, with top and bottom

diameters of 300 and 1300 mm, respectively. By applying bottom pressure up to 600 kPa, the in-situ overburden stress

conditions, equivalent up to 40 m soil deposits, become consistent with the embedment depth of commonly used piles.

Observations indicated that a linear trend of stress distribution exists, and this device can create overburden stress in the

desired control volume along the central core. Moreover, a couple of compressive and tensile load tests were performed on

steel model piles driven in sand with a length of 750 mm, and different length to diameter (L/D) ratios between 8-15.

Comparison between measured and predicted ultimate capacity of model piles performed in FCV demonstrate a suitable

conformity for similar confinement conditions in the field. Therefore, the FCV can be considered as an appropriate approach

for the investigation of piling geotechnical behavior, and the examination of construction effects.


A. Saeedi Azizkandi, M.h. Baziar, H. Rasouli, M. Modarresi, H. Shahnazari,
Volume 13, Issue 2 (6-2015)
Abstract

In present research, 17 centrifuge tests have been conducted to study the effect of various parameters such as the number of piles, the distance between piles, gradation and thickness of the granular layer on the load-settlement behavior of a pile raft system. The results showed the importance of granular layer to reduce the settlement of non-connected pile raft system when the roles of piles are to reduce the settlement. In other words when the piles have major contribution on the bearing capacity of pile raft system, presence of a granular layer may increase the settlement.
Behrooz Mehrzad, Abdolhosein Haddad, Yaser Jafarian,
Volume 14, Issue 2 (3-2016)
Abstract

Currently, there is no reliable design procedure which considers all aspects of liquefaction effects on shallow foundations. There are many light and heavy structures resting on saturated sand with high liquefaction potential in seismic areas. The aim of this experimental and numerical study is to evaluate the performance of two shallow foundations with different contact pressures in liquefaction. The results of the centrifuge experiment of shallow foundations with surcharges of three-story and nine-story buildings on liquefiable sand are presented in detail. Although entire soil profile liquefied, no liquefaction observed under the foundations. There was a clear difference in settlement mechanisms observed beneath the shallow foundation and in the free-field. The heavy foundation fluctuated more strongly compared with the lighter one. The effect of soil permeability and contact pressure on foundation response was investigated during numerical study. The experiment was simulated two dimensionally using a fully coupled nonlinear constitutive model (UBCSAND) implemented in a finite difference program, FLAC-2D. The results show that settlement of foundations increased with the increase of soil permeability. Trends of excess pore water pressure were captured reasonably by the soil model, but the settlement mechanisms were different. The soil model underestimated total liquefaction-induced settlement of shallow foundation, especially for light foundation.


Sedat Sert, Aybars Nafi Kılıç,
Volume 14, Issue 3 (4-2016)
Abstract

With the ongoing developments in numerical analysis methods, it is possible to model the soil-foundation-structure interaction and non-linear load-deformation behavior of soils in three-dimensional calculations. In light of these developments, the calculations of mat foundations can be made more realistically and economically by using advanced softwares, which take into account the interactions of these three components than the conventional methods. The aim of this paper is to present the effect of superstructure loading types on the analysis of mat foundations by using three dimensional finite element analysis results. Thirty six different models have been established to examine these effects on the internal forces and settlement behavior. The data of a 3-storey existing building has been used and superstructure loads have been modeled in different ways such as uniformly distributed loads, column loads and by modeling all building. The building has been modeled with a mat foundation having a thickness of 50 cm, 75 cm and 100 cm in seperate models. The mat and superstructure elements have been modeled either with 2D plate elements or 3D volume elements in different models. The “Mohr-Coulomb” material model has been used and soil properties have been represented as “normally loaded” and “overconsolidated”. Results for total and differential settlements and internal forces have been presented in figures and graphs. An important finding is the place where the maximum displacement occurs. It is very different when the load is transmitted by modeling the whole structure and it causes to have different internal forces and different placement of reinforcement. Another finding is that the biggest decreases in differential settlements are seen in column and building loading when the soil properties improved, while this effect remains very small in distributed loading. For bending moments, the biggest difference in comparison to the loading types is that the maximum moments are calculated in different places independent to the location of shear walls, when the load is simulated as a uniformly distributed load. It has been found that the superstructure loading type affects the settlement pattern and internal forces, so this effect must be taken into account.


Maryam Haghbin,
Volume 14, Issue 7 (10-2016)
Abstract

In the present research, an analytical method is applied to determine the bearing capacity of strip footing on two layers of the soil. Bearing capacity of the footing is calculated according to soil resistance beneath the foundation and virtual retaining wall method. In the said method, the active and passive force on the retaining wall are considered equal on the edge in order to determine the bearing capacity of the footing. Regarding two layers of soil, the active and passive forces of each layer is found and their resultant is applied to calculate footing bearing capacity. This method has many advantages including the possibility to determine the depth of rupture surface of the soil beneath the footing, and to study the effect of the soil second layer on footing bearing capacity. Moreover, the effect of soil improvement beneath the footing as well as the depth and width of compacted area on bearing capacity of footing are also studied here in this research. In general, the studied parameters in this project consist of soil layers thickness, soil cohesion and friction angle, footing depth and width, the width of compacted soil beneath the footing, and the depth of underground water. By programming in MATLAB, the calculation and deduction was fulfilled. The results were compared with the bearing capacity of the footing on one layer of the soil in various situations in order to study the effect of various parameters in two layers of the soil. Finally, this bearing capacity of the footing was compared with the previous experimental methods and reliable results were obtained.


Hanane Dob , Salah Messast, Abdelhamid Mendjel, Marc Boulon, Etienne Flavigny,
Volume 14, Issue 7 (10-2016)
Abstract

Considerable strains appear in the structures during accumulation of the irreversible strains of the subgrade under the effect of the cyclic loads. If the number of cycles is very large, even a small strain after accumulation becomes significant and sometimes harmful. In this study, a simple numerical modeling of the behavior of sand under cyclic loading is proposed. The suggested approach consists, in drained condition, in determining the parameters characterizing the average cyclic path of the soil under the effect of the number of cycles duly characterized and translating the cyclic effect by a volumetric strain cumulated by a variation of the module of the soil. In this study, we are interested in cyclic triaxial compression tests simulated by a finite element calculation. While proposing an analogy between the cyclic pseudo creep and the soft soil creep model (SSCM), on the first hand we propose an equivalence between the cyclic parameters and the parameters of SSCM, and on the other an equivalence time number of cycles will be established. The application of the formulation suggested on a shallow foundation under cyclic loading confirms the good adaptation of the model suggested to this type of problem.



Volume 15, Issue 6 (9-2017)
Abstract

It is vital to control the settlement of ultra-high voltage and long span tower foundation because of the difficult construction and strict deformation control. Based on the thinking of deformation compatibility, the mechanical model of deformation compatibility between pile and soil is established. Relying on the long span tower project Lingzhou–Shaoxing ±800 kV DC transmission lines across the Yangtze River, through checking ultimate bearing capacity of existing pile foundation, it can be obtained that the present design foundation can effectively meet the upper 200–220 t load, but it cannot meet the load requirements about 300 t in the construction. The failures of tower foundation mainly display that piles cut into the soil with penetration type in the early condition. With the load increasing, the shallow soil and infrastructure gradually damage with the whole cap sinking, cushion layer destruction and the surrounding soil uplifting. As a result, tower foundation is unable to withstand the effect of upper overload and the whole tower becomes shear failure. The treatment scheme was proposed that it can improve the cushion thickness and strength combined with grouting consolidation to soil around the piles. Thus, the stability of tower foundation improves significantly and settlement was controlled within the permitted range of below 10 mm, which can meet the structure requirements. The results of numerical simulation based on deformation compatibility between pile and soil coincide well with field measured results.



Volume 15, Issue 6 (9-2017)
Abstract

In this study, an assessment to excess pore water pressure generated around a single pile and pile group excited by two opposite rotary machines embedded in saturated sandy soil was considered experimentally. A small-scale physical model was manufactured to accomplish the experimental work in the laboratory. The physical model consists of: two small motors supplied with eccentric mass of 0.012 kg and eccentric distance (20 mm) representing the two opposite rotary machines, an aluminum shaft 20 mm in diameter as the pile, and a steel plate with dimensions of (160 × 160 × 20 mm) as a pile cap. The experimental work was achieved taking the following parameters into considerations: pile embedment depth ratio (L/d), spacing between piles (S) and operating frequency of the rotary machines. Twelve tests were conducted in medium dense fine sandy soil with 60 % relative density. In all these tests, the change in excess pore water pressure was measured around the pile at two spots: at the middle of the pile and at its tip. The results revealed that the generation of excess pore water pressure was affected by the following parameters: slenderness ratio of the pile, operating frequency of the machines, and the soil permeability. However, for all cases, it was found that the pore water pressure generated during operation was not greater than 20 % of the initial hydrostatic pressure. Using pile foundation reduced the amplitude of vertical vibration by about (300 %) for all operating frequencies, lengths of piles, pile spacings and number of piles. In addition, the presence of piles reduced the disturbance (fluctuation) in this amplitude by about (400 %). For single pile, and under the same operating frequency, a small decrease in the amplitude of vertical vibration resulted from increasing the length of the pile.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb