Search published articles


Showing 3 results for Kaolinite

Mahmoud Reza Abdi,
Volume 9, Issue 2 (6-2011)
Abstract

The use of various slags as by-products of steel industry is well established in civil engineering applications. However, the use

of BOS slag in the area of soil stabilization has not been fully researched and developed despite having similar chemical

composition and mineralogy to that of Portland cement. This paper reports on efforts to extend the use of BOS slag to soil

stabilization by determining possible beneficial effects it may have on compressive strength and durability. Results of laboratory

tests conducted on kaolinite samples stabilized with lime and treated with various percentages of BOS slag are presented. Tests

determined strength development of compacted cylinders, moist cured in a humid environment at 35° C and durability by freezing

and thawing method. Results showed that additions of BOS slag to kaolinite samples singularly or in combination with lime

increased unconfined compressive strength and durability. These characteristics were significantly enhanced by the concurrent

use of lime and BOS slag for stabilization of kaolinite.


Mahmood Reza Abdi, Hamed Mirzaeifar,
Volume 14, Issue 4 (6-2016)
Abstract

Abstract To meet construction demands, reinforcement and stabilization methods have been widely used to improve properties and mechanical behavior of clays. Although cement stabilization increases soil strength, at the same time reduces ductility which is of paramount importance in roads, landfill covers, etc. In current study, kaolinite was stabilized with 1, 3 and 5% cement and mixed with 0.05, 0.15, 0.25 and 0.35% polypropylene fibers to increase ductility. Samples were cured at 35°C for 1, 7 and 28 days and subjected to unconfined compression tests. Results showed that inclusion of discrete fibers to uncemented and cemented kaolinite reduced stiffness and the loss of post-peak strength and changed brittle behavior of cemented samples to a more ductile behavior. Cement and fiber contents as well as curing period were found to be the most influential factors and fiber – soil interaction was influenced by binding materials.


Gholamreza Asadollahfardi,
Volume 14, Issue 4 (6-2016)
Abstract

This paper presents a numerical model based on  the explicit finite difference method for contaminant transport under electrokinetic remediation process. The effect of adsorption, precipitation and water auto-ionization reactions were considered  to  set of algebraic equations. Also the effect of electrolysis reaction in anode and cathode cells was considered with appropriate boundary conditions. The model predictions are compared with experimental results of electrokinetic lead removal from kaolinite in the literature. The coefficient of determination and index of agreement between the lead concentration of experimental result and model prediction was 0.974 and 0.884, respectively. The coefficient of determination and index of agreement between the pH value of  the experiment and the pH prediction was 0.975 and 0.976, respectively



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb