Search published articles


Showing 2 results for Monte Carlo Simulation

R. Jamshidi Chenari, P. Pishgah ,
Volume 12, Issue 2 (4-2014)
Abstract

In this technical note, a methodology is introduced for reliability calculation of consolidation settlement based on cone penetration test (CPT) data. The present study considers inherent soil variability which influences consolidation settlements results. To proceed reliability analysis, the measured data of a sample corrected cone tip resistance (􀝍􀯧) is detrended using a quadratic trend and the residuals are assumed to be lognormally distributed random field. Realizations of 􀝍􀯧 is generated by using spatial variability of residuals including standard deviation and the scale of fluctuation. The quadratic trend and the generated residuals are then combined to correlate shear and bulk modulus as input consolidation properties for coupled analysis and subsequently consolidation settlement was calculated by using finite difference method adopted in Monte Carlo simulations. The results of reliability analysis are presented describing the range of possible settlements by considering characteristics of uncertainties involved at the particular site. Number of realizations rendering settlements smaller than the allowable settlement must be such that guarantee proper performance or acceptable reliability index.
Damilola Oyejobi,
Volume 14, Issue 8 (12-2016)
Abstract

The occurrence of wave and wind forces on tension leg platform (TLP) was assumed to be statistically independent but the intensity of wave force is a function of wind velocity because wave is a wind driven force. The focus of this paper is to study the effects of wind velocity on wave force. The contribution of steady and fluctuating wind to the response of the TLP over random wave only was also studied. Pierson Moskowitz wave and Emil Simiu wind spectra are simulated using Monte Carlo simulation. The variable submergence, drag force in Morison equation, tension fluctuation together with coupling between wind and wave contributed to the non-linearity considered in the single degree of freedom equation. The dynamic equation was solved using Newmark-Beta scheme. The statistical and power spectral density functions of the response quantities are reported. It is concluded that wind forces reduce the root mean square (RMS) tension force in the cable and thereby increased the motion responses in intact and a removed tendon TLP. The wind driven force (wave) has higher responses in severe sea states and the contribution of wind effect was suppressed due to hydrodynamic damping. The effect of the wind fluctuation is more pronounced in less severe sea state.Stochastic response of intact and a removed tendon tension leg platform to wave and wind loads



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb