Search published articles


Showing 5 results for Piles

Kimiaei M., Shayanfar M.a., Hesham Ei Naggar M., Agha Kouchak A.a.,
Volume 2, Issue 2 (6-2004)
Abstract

The seismic response of pile-supported offshore structures is strongly affected by the nonlinear behavior of the supporting piles. Nonlinear response of piles is the most important source of potentially nonlinear dynamic response of offshore platforms due to earthquake excitations. It is often necessary to perform dynamic analysis of offshore platforms that accountsfor soil nonlinearity, discontinuity condition at pile soil interfaces, energy dissipation through soil radiation damping and structural non linear behaviors of piles.In this paper, an attempt is made to develop an inexpensive and practical procedure compatible with readily available structural analysis software for estimating the lateral response of flexible piles embedded in layered soil deposits subjected to seismic loading. In the proposed model a BNWF (Beam on Nonlinear Winkler Foundation) approach is used consisting of simple nonlinear springs, dash pots and contact elements. Gapping and caving-in conditions at the pile-soil interfaces are also considered using special interface elements. This model was incorporated into a Finite Element program (ANSYS), which was used to compute the response of laterally excited piles. A linear approach was used for seismic free field ground motion analysis. The computed responses compared well with the Centrifuge test results.This paper deals with the effects of free field ground motion analysis on seismic non linear behavior of embedded piles. Different parts of a BNWF (Beam on Nonlinear Winkler Foundation) model, together with quantitative and qualitative findings and conclusions for dynamic nonlinear response of offshore piles, are discussed and addressed in detail. The proposed BNWF model (only using the existing features of the available general finite element software) could easily be implemented in a more comprehensive model of nonlinear seismic response analysis of pile supported offshore platforms.
A. Eslami, M. Veiskarami, M. M. Eslami,
Volume 10, Issue 2 (6-2012)
Abstract

It has been realized that the raft (mat) foundations are capable of bearing very large loads when they are assisted with a pile
group. The contribution of both raft and piles to carry the surcharge loads is taken into account, considering the stiffness and
strength of involved elements in the system, i.e. piles, raft and surrounding soil. The piles are usually required not to ensure the
overall stability of the foundation but to act as settlement reducers. There is an alternative design in which, the piles are nonconnected
from the raft to reduce the settlement, which are then known to be "settlement reducer non-connected piles" to increase
the system stiffness. In this paper, two and three dimensional finite element analysis of connected and non-connected pile-raft
systems are performed on three case studies including a 12-storey residential building in Iran, a 39-storey twin towers in
Indonesia, and the Messeturm tower, 256m high, in Frankfurt, Germany. The analyses include the investigation of the effect of
different parameters, e.g. piles spacing, embedment length, piling configuration and raft thickness to optimize the design. The role
of each parameter is also investigated. The parametric study results and comparison to a few field measurements indicate that
by concentrating the piles in the central area of the raft foundation the optimum design with the minimum total length of piles is
achieved, which is considered as control parameter for optimum design. This can be considered as a criterion for project cost
efficiency. On the other hand, non-connected piled-raft systems can significantly reduce the settlements and raft internal bending
moments by increasing the subsoil stratum stiffness. Finally, the comparison indicates that simple and faster 2D analysis has
almost similar results to the time consuming and complicated 3D analysis.


I. Hosseinzadeh Attar, K. Fakharian,
Volume 11, Issue 2 (11-2013)
Abstract

Pile foundations are frequently used in industrial projects in southwest lowlands of Iran. Although high setup of shaft resistance

is usually reported in the area, no reliable formulation or guidelines are available for considering the increased capacity in design

applications. Therefore, the pile design practices are usually not optimized. The main objective of this paper is presenting a site

specific formulation for setup effects of a utility plant in southwest Iran in which a good database of prestressed concrete driven

piles is available. Fajr-II Petrochemical site in PetZone of Mahshahr accommodating a utility plant is selected as the database of

the current study. The setup factor (A) and the reference time (t0) are evaluated through processing of a relatively large database

of this well-supervised piling project. As the main portion of variations of driven piles capacity with time is related to shaft, only

shaft resistance variations are considered in this research. The shaft capacity variations are derived from signal matching analysis

on PDA tests. Reliability of PDA tests has been confirmed through comparing with the static load test results. Influence of driving

the surrounding piles on setup factor is also investigated. The results show that the average setup factor (A) and the reference time

(t0) of 0.30 and 0.01 day, respectively, are proper values for estimating the long term capacity in this region. Evaluation of the

results indicates that driving 8 piles around the test pile has increased the “A” factor average of 40% resultingin increase of the

shaft capacity about 19% in one month and 22% in one year, in comparison with the tested piles with no surrounding piles driven.


P. Vahabkashi, A. R. Rahai, A. Amirshahkarami,
Volume 12, Issue 1 (3-2014)
Abstract

Piles or drilled shafts used in bridge foundation, waterfronts, and high rise buildings are generally subjected to lateral loads. In order to study the effect of concrete pile geometry on the structural behavior in layered soils, several models with different shapes and dimensions for piles and different properties for two soil layers with variable thickness were selected and analyzed using the finite difference method. The performance of piles situated in layered granular soil with different compaction and thicknesses were studied in two cycles of lateral loading and unloading. The applied finite difference procedure is also validated based on experimental and published results. The pile head displacement of different models due to their overall deformation and rotation were calculated under maximum loading. For a comparison of pile head displacement due to their overall deformation and rotation in different models, the "performance index” is defined as the ratio of “displacement due to deformation” to the “total displacement”.
Changjie Xu, Yuanlei Xu, Honglei Sun,
Volume 13, Issue 2 (6-2015)
Abstract

In soft soil areas, equal-length piles are often adopted in the retaining system. A decrease in the bending moment value borne by the retaining structure along the pile depth (below the excavation bottom), leads to an inadequate use of the pile bending capacity near the pile bottom. This paper presents retaining systems with long and short pile combinations, in which the long piles ensure integral stability of the excavation while the short piles give full play to bearing the bending moment. For further analysis on pile and bottom heaves deformations and inner-force characteristics, three-dimensional models were built in order to simulate the stage construction of the excavation. The ratio between long and short pile numbers, and the effects on short pile length pile horizontal deformation, pile bending moment and bottom heave are investigated in detail. In the end, a feasible long-short pile combination is established. Obtained results from the simulation data and the field data prove that the long-short pile retaining system is feasible.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb