Search published articles


Showing 2 results for Plastic Hinge

Ali Kheyroddin, Hosein Naderpour,
Volume 5, Issue 1 (3-2007)
Abstract

A parametric study is performed to assess the influence of the tension reinforcement index, ( ω = ρ fy /f Bc), and the bending moment distribution (loading type) on the ultimate deformation characteristics of reinforced concrete (RC) beams. The analytical results for 15 simply supported beams with different amounts of tension reinforcement ratio under three different loading conditions are presented and compared with the predictions of the various formulations and the experimental data, where available. The plastic hinge rotation capacity increases as the loading is changed from the concentrated load at the middle to the third-point loading, and it is a maximum for the case of the uniformly distributed load. The effect of the loading type on the plastic rotation capacity of the heavily reinforced beams is not as significant as that for the lightly reinforced beams. Based on the analytical results obtained using the nonlinear finite element method, new simple equations as a function of the tension reinforcement index, ω, and the loading type are proposed. The analytical results indicate that the proposed equations can be used for analysis of ultimate capacity and the associated deformations of RC beams with sufficient accuracy.
Xiaolei Chen, Jianping Fu, Feng Xue, Xiaofeng Wang,
Volume 15, Issue 4 (6-2017)
Abstract

This paper presents a comparative numerical research on the overall seismic behavior of RC frames with different types of rebars (normal versus high strength rebar). A nonlinear numerical model is developed and is validated using experimental results. Comparing the numerical and experimental behaviors shows that the developed model is capable of describing the hysteretic behavior and plastic hinges development of the experimental RC frames with various strength longitudinal steel bars. The validated model is then used, considering the influences of axial load ratios and volumetric ratios of longitudinal rebars of column, to investigate the effects of reinforcement strength on the overall seismic behavior of RC frames. The simulation results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frames reinforced with normal and high strength steel bars have comparable overall deformation capacity. The effect of axial load ratio on the energy dissipation, hysteretic curves and ultimate lateral load of frames with different strength rebars is similar. In addition, increasing the volumetric ratios of longitudinal rebars can increase the ultimate lateral load of frame and improve the plastic hinge distribution of frame.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb