Search published articles


Showing 2 results for Rheology

P. Ghoddousi, R. Ahmadi, Mahdi Sharifi,
Volume 8, Issue 4 (12-2010)
Abstract

 Superior performances of Self-Compacting Concrete (SCC) in fresh state to achieve a more uniform distribution encourage the addition of fibers in concrete which is a motivation for structural application of fiberreinforced concrete. Fiber addition reduces the workability of Self-Compacting Fiber Reinforced Concrete (SCFRC). To provide required workability of the SCFRC, more paste is needed in the mixture. Therefore, the coarse aggregate content shall be adjusted to maintain its workability. The purpose of this study is to drive a model for estimating the aggregate contents for SCFRC. This model is based on constant covering mortar thickness theory. In this paper, all parameters which are participated in coarse aggregate content are discussed and presented in a relation. Then another relation is developed for predicting the void volume in the fibrous concrete. These relations are combined and a mathematical relation is deduced for predicting the coarse volume content in the function of the fiber factors. Proposed model is validated by conducting a rheological test. The result shows that the proposed model is simple, applicable and can be used as starting point in practical project.      Finally in order to complete the proposed model, another relation has been derived that can show the interaction of parameters involved in SCFRC rheology behavior. 


Parviz Ghoddousi, Amir Masoud Salehi,
Volume 15, Issue 8 (12-2017)
Abstract

The fresh properties of Self Compacting Concrete (SCC) might be more susceptible to quality and quantity changes of ingredients than conventional concrete because of a combination of detailed requirements, more complex mix design, and inherent low yield stress and viscosity. In spit of the low robustness of SCC, there are a few methods available to assess the SCC robustness that the accuracy of these methods has not been fully agreed. The current study provides an index for SCC robustness based on the rheology parameters. Thus, an experimental program was undertaken to evaluate the robustness of eight selected SCCs. For doing this, water content of each SCC was changed slightly and their fresh and hardened properties were measured. The results indicated that the length of rheology parameters curve due to variation of mixing water is able to assess the SCC robustness that is comparable with combined performance based on the workability tests changes. According to this index, the robustness of SCC increases about 10% by using air-entraining admixture (AEA) and decreases considerably by reduction the paste volume (up to about 5 times). Also, the most appropriate single workability test to assess the robustness is sieve segregation test. Moreover, the scattering of compressive strength results show that there is a level of robustness in fresh state that after that the scattering of results in hardened state can be affected.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb