Showing 4 results for Seismic Analysis
H. Moharrami, S.a. Alavinasab,
Volume 4, Issue 2 (6-2006)
Abstract
In this paper a general procedure for automated minimum weight design of twodimensional
steel frames under seismic loading is proposed. The proposal comprises two parts:
a) Formulation of automated design of frames under seismic loading and b) introduction of an
optimization engine and the improvement made on it for the solution of optimal design. Seismic
loading, that depends on dynamic characteristics of structure, is determined using "Equivalent
static loading" scheme. The design automation is sought via formulation of the design problem in
the form of a standard optimization problem in which the design requirements is treated as
optimization constraints.
The Optimality Criteria (OC) method has been modified/improved and used for solution of the
optimization problem. The improvement in (OC) algorithm relates to simultaneous identification of
active set of constraints and calculation of corresponding Lagrange multipliers. The modification
has resulted in rapid convergence of the algorithm, which is promising for highly nonlinear optimal
design problems. Two examples have been provided to show the procedure of automated design and
optimization of seismic-resistant frames and the performance and capability of the proposed
algorithm.
S. N. Moghaddas Tafreshi,
Volume 6, Issue 4 (12-2008)
Abstract
This paper presents the numerical analysis of seismic soil-pile-superstructure interaction in soft clay using free-field soil analysis and beam on Winkler foundation approach. This model is developed to compute the nonlinear response of single piles under seismic loads, based on one-dimensional finite element formulation. The parameters of the proposed model are calibrated by fitting the experimental data of largescale seismic soil-pile-structure tests which were conducted on shaking table in UC Berkeley. A comparative evaluation of single piles shows that the results obtained from the proposed procedure are in good agreement with the experimental results.
M.a. Goudarzi, S.r. Sabbagh-Yazdi,
Volume 7, Issue 3 (9-2009)
Abstract
The main objective of this article is evaluation of the simplified models which have been developed for
analysis and design of liquid storage tanks. The empirical formulas of these models for predicting Maximum Sloshing
Wave Height (MSWH) are obtained from Mass Spring Models (MSM). A Finite Element Modeling (FEM) tool is used
for investigating the behavior the some selected liquid storage tanks under available earthquake excitations. First, the
results of FEM tool are verified by analyzing a liquid storage tank for which theoretical solution and experimental
measurements are readily available. Then, numerical investigations are performed on three vertical, cylindrical tanks
with different ratios of Height to Radius (H/R=2.6, 1.0 and 0.3). The behaviors of the tanks are initially evaluated using
modal under some available earthquake excitations with various vibration frequency characteristics. The FEM results
of modal analysis, in terms of natural periods of sloshing and impulsive modes period, are compared with those
obtained from the simplified MSM formulas. Using the time history of utilized earthquake excitations, the results of
response-history FEM analysis (including base shear force, global overturning moment and maximum wave height)
are compared with those calculated using simplified MSM formulations. For most of the cases, the MSWH results
computed from the time history FEM analysis demonstrate good agreements with the simplified MSM. However, the
simplified MSM doesn’t always provide accurate results for conventionally constructed tanks. In some cases, up to
30%, 35% and 70% average differences between the results of FEM and corresponding MSM are calculated for the
base shear force, overturning moment and MSWH, respectively.
M. Bastami, M. Hajihasani,
Volume 12, Issue 1 (3-2014)
Abstract
Dynamic analysis of the seismic performance of power substation equipment is time-consuming, expensive and uses responses that are sensitive to ground motion. This research proposes a method to derive input waves for dynamic analysis in place of original records from seismic events in Iran. In this study, a power transformer, current transformer, circuit breaker and disconnect switch are analyzed using fifty records from the far-field and near-field earthquake ground motions. Statistical analysis is done on the maximum acceleration and displacement responses to obtain their pushover curves. Sinusoidal waves were created using the fundamental frequencies of the equipments and PGA of 0.1g through 0.5 g as the amplitude. The results are compared with the original records and show that the proposed input waves provide a reasonable fit for an extensive range of near-field and far-field ground motion results.