Search published articles


Showing 11 results for Shape

Kheyr Aldin A., Mortezaei A.r.,
Volume 2, Issue 1 (3-2004)
Abstract

Structural walls are used extensively in moderate- and high-rise buildings to resist lateral loads induced by earthquakes. The seismic performance of many buildings is, therefore, closely linked to the behavior of the reinforced concrete walls. The analytical models used in this paper are developed to study the push-over response of T-shaped reinforced concrete walls andinvestigate the influence of the flange walls on laterally loaded walls and nonlinear behavior of shear walls, namely strength, ductility and failure mechanisms. A layered nonlinear finite element method is used to study the behavior of T-shaped and rectangular (barbell) shear walls. This paper introduces a computer program to practically study three-dimensional characteristics of reinforced concrete wall response by utilizing layered modeling. The program is first verified bysimulated and reported experimental response of 3-D reinforced concrete shear walls. Subsequently, a study considering eighteen analytical test specimens of T-shaped and barbell shear walls is carried out. Finally, based on analytical results, a new equation for minimum ratio of shear wall area to floor-plan area is proposed.
I. Rasoolan, S.a. Sadrnejad, A.r. Bagheri,
Volume 7, Issue 2 (6-2009)
Abstract

Concrete is a heterogeneous material with a highly non linear behavior, which is mainly caused by the

initiation and propagation of micro cracks within the several components of the material. The damage behavior of

concrete is usually simulated on the macro scale using complex constitutive models. The direct determination of the

homogenized material parameters is often difficult and sometimes impossible. Furthermore these materials models do

not explicitly represent effects and bond behaviors of interfaces between the several components. So in order to predict

of concrete behaviors and characteristics, it should be modeled as a three phase composite material consisting of

aggregate, interfacial transition zone (ITZ) and cement paste. The size and distribution of aggregate affects concrete

characteristics. Because of the random distribution and size variation of aggregate in concrete, the modeling of

concrete behavior based on component in meso structure is difficult and so we must use simple assumption. In this

paper with mixing design and grading curve we developed a simple method to replace real aggregate with equivalent

sphere aggregate with effective diameter. So we can use simple methods instead of complex numeral and randomness

or x ray methods to find effective diameter and use it to determine two arrangements with maximum and minimum

aggregate volume as a repeatable basical element .As a result we can use this element to modeling the behavior of

sample concrete in meso scale and three phases.


A.r. Khaloo, I. Eshghi, P. Piran Aghl,
Volume 8, Issue 3 (9-2010)
Abstract

In this paper the response of cantilevered reinforced concrete (RC) beams with smart rebars under static lateral loading has been numerically studied, using Finite Element Method. The material used in this study is SuperelasticShape Memory Alloys (SE SMAs) which contains nickel and titanium elements. The SE SMA is a unique alloy that has the ability to undergo large deformations and return to their undeformed shape by removal of stresses. In this study, different quantities of steel and smart rebars have been used for reinforcement andthe behavior of these models under lateral loading, including their load-displacement curves, residual displacements, and stiffness, were discussed. During lateral loading, rebars yield or concrete crushes in compression zone in some parts of the beams and also residual deflections are created in the structure. It is found that by using SMA rebars in RC beams, these materials tend to return to the previous state (zero strain), so they reduce the permanent deformations and also in turn create forces known as recovery forces in the structure which lead into closing of concrete cracks in tensile zone. This ability makes special structures to maintain their serviceability even after a strong earthquake


E. Sanaei, M. Babaei,
Volume 10, Issue 3 (9-2012)
Abstract

Due to the algorithmic simplicity, cellular automata (CA) models are useful and simple methods in structural optimization. In

this paper, a cellular-automaton-based algorithm is presented for simultaneous shape and topology optimization of continuum

structures, using five-step optimization procedure. Two objective functions are considered and the optimization process is

converted to the single objective optimization problem (SOOP) using weighted sum method (WSM). A novel triangle

neighborhood is proposed and the design domain is divided into small triangle elements, considering each cell as the finite

element. The finite element formulation for constant strain triangles using three-node triangular elements is developed in this

article. Topological parameters and shape of the design space are taken as the design variables, which for the purpose of this

paper are continuous variables. The paper reports the results of several design experiments, comparing them with the currently

available results obtained by CA and genetic algorithm in the literature. The outcomes of the developed scheme show the

accuracy and efficiency of the method as well as its timesaving behavior in achieving better results


A. Ghanbari, E. Hoomaan, M. Mojallal,
Volume 11, Issue 1 (5-2013)
Abstract

For calculating the natural frequency of structures such as buildings, chimneys, bridges and silos appropriate analytical

formulas exist. However, in the case of retaining walls undergoing the soil pressure at one side, calculating the natural frequency

is not a straightforward task and requires the effects of soil-structure interactions to be considered. By modeling the soil as series

of linear springs, a new formulation is presented in this article, to calculate the natural frequency of retaining walls. This formula

considers the vertical cross sectional width change, and hence, enables us to calculating the natural frequency of retaining walls

with different types of backfill. The geometrical properties of the retaining walls and its bending rigidity together with the soil’s

modulus of elasticity and its Poisson’s ratio are the most important parameters to calculate. A comparison of the results for

retaining walls with constant cross section obtained from the suggested method with those of the software analyses was carried

out and good agreement was detected. A second comparison of the results with those of other researchers revealed that the natural

frequency of flexible retaining wall is an upper bound for natural frequency of rigid walls. The Selected shape function is also

very close to the real shape mode.


Me. Panji, M. Kamalian, J. Asgari Marnani, M. K. Jafari,
Volume 12, Issue 2 (4-2014)
Abstract

In this paper, normalized displacement amplitude of the ground surface was presented in the presence of the semi-sine shaped valley above the truncated circular cavity embedded in a homogenous isotopic linear elastic half-plane, subjected to obliquely propagating incident SH waves as Ricker wavelet type. The proposed direct time-domain half-plane boundary element formulation was used and extended to analyze the combined multi-boundary topographic problems. While using it, only boundary of the valley and the surrounding cavity should be discretized. The effect of four geometric parameters including shape ratio of the valley, depth ratio, horizontal location ratio and truncation thickness of the cavity and incident wave angle was investigated on the responses at a single dimensionless frequency. The studies showed that surface behavior was completely different due to complex topographic features, compared with the presence of either valley or cavity alone. In addition, the cavity existence below the surface could play a seismic isolation role in the case of vertical incident waves and vice versa for oblique waves.
A. R. Rahai, M. Mortazavi,
Volume 12, Issue 4 (12-2014)
Abstract

During the past years the use of buckling restrained braces (BRBs) have had a dramatic growth due to their better performance comparing to conventional braces. BRBs have more ductility and energy absorption capacity by excluding the overall brace buckling. However, even these kinds of braces have some problems restricting their use in some projects, i.e. high tolerance of applying unbonding material, concrete placing difficulties and their weight. Accordingly, many researchers have conducted experiments to find the possibility of shortening or even eliminating the infill material of the braces. The following study has addressed the effect of debonding material friction ratio, shortening the concrete fill, and finally eliminating it if possible, by reshaping the core element with constant section area. The operated analysis has been carried out both numerically and experimentally. ABAQUS finite element software was applied for numerical analysis and the results were verified by an experimental study in two groups of models each including four full-scale brace models. With a constant core section area, results revealed that without the risk of buckling, the concrete cover length could be reduced. With a special core profile, the infill may be fully omitted and the restrainer would be made up of only a steel tube, which may happen without any changes made to the cross sectional area of the core profile.
A. Kaveh, B. Mirzaei, A. Jafarvand,
Volume 12, Issue 4 (12-2014)
Abstract

In this paper, the problem of simultaneous shape and size optimization of single-layer barrel vault frames which contains both of discrete and continuous variables is addressed. In this method, the improved magnetic charged system search (IMCSS) is utilized as the optimization algorithm and the open application programming interface (OAPI) plays the role of interfacing analysis software with the programming language. A comparison between the results of the present method and some existing algorithms confirms the high ability of this approach in simultaneous shape and size optimization of the practical and large-scale spatial structures.
A. Kaveh, R. Ghaffarian,
Volume 13, Issue 1 (3-2015)
Abstract

The main aim of this paper is to find the optimum shape of arch dams subjected to multiple natural frequency constraints by using an efficient methodology. The optimization is carried out by charged system search algorithm and its enhanced version. Computing the natural frequencies by Finite Element Analysis (FEA) during the optimization process is time consuming. In order to reduce the computational burden, Back Propagation (BP) neural network is trained and utilized to predict the arch dam natural frequencies. It is demonstrated that the optimum design obtained by the Enhanced Charged System Search using the BP network is the best compared with the results of other algorithms. The numerical results show the computational advantageous of the proposed methodology.
Alireza Darvishpour, Ali Ghanbari, Seyyed Ali Asghar Hosseini, Masoud Nekooei,
Volume 15, Issue 3 (5-2017)
Abstract

Most of the proposed methods for obtaining the free vibration natural frequency of the retaining wall have been presented, assuming the behavior of the wall in two-dimensional domain, and they are not able to express the three-dimensional behavior of these structures in a satisfying manner. In this paper, the plate theory is employed to analyze the free vibration of wall-soil system in three-dimensional domain. So the retaining wall is modeled as a clamped-free plate and the stiffness of the soil existing behind the wall is modeled as a set of springs. Using the approximate Rayleigh method, new analytical expression for obtaining the free vibration natural frequencies for the three first modes of the wall is represented. The results of the proposed model are compared with both the results of the other researchers and the ones from finite element method (FEM). They are also compared with the results of a full-scale experiment and it shows a good agreement. The comparison shows that modeling the wall in two-dimensional form is not accurate enough to calculate all the natural frequencies of the wall. The results of this paper show that there is a considerable difference between two- and three-dimensional behavior of the walls. The proposed method also gives the free vibration natural frequencies of the wall extensional modes with an acceptable accuracy. Finally, the effect of tensile and compressive behavior of the soil on the fundamental frequency is studied. This research can be considered as a new field in three-dimensional calculation of the retaining walls.



Volume 15, Issue 7 (10-2017)
Abstract

In this paper, the scour hole dimensions around submerged and emerged spur dike in a 90o bend along with the mean and turbulent flowfield were investigated experimentally. Two types of re-circulating flow at the downstream of the spur dike and around the spur dike wing were observed. A direct relation between the estimated bed shear stress using TKE and the scour process prevails. More attentions is needed in estimating the bed shear stress using vertical velocity fluctuations. The scour hole dimensions increase by increasing the ratio of radius of channel bend to channel width , the Froude number of the spur dike, ratio of the length of spur dike to channel width and ratio of the approach mean flow velocity to the approach flow velocity at threshold condition. However, vice versa trends were observed by increasing ratio of the spur dike length to the median sediment size, ratio of the wing length of spur dike to the length of spur dike and the submergence ratio. A particular location of the spur dike in the sharp bend was specified beyond which the scour hole dimensions increase. The ratio of the spur dike length to the median sediment size has a secondary effect on the scour hole dimensions. New equations are proposed for prediction of the scour hole dimensions considering the submergence ratio along with other effective parameters.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb